15.6 Fourier transforms 435
so that, by the discussion in Section 5.4 of the Riemann integral as the limit of a sum,
Equation (15.65) is then
(15.69)
where, after taking the limit in (15.66) and (15.67),
(15.70)
(15.71)
The representation (15.69) of f(x)is called a Fourier integral(the name Fourier
transform is normally reserved for a slightly different form, as described below).*
EXAMPLE 15.8For the square wave
(15.72)
Find (i) the Fourier series expansion in interval−l 1 ≤ 1 x 1 ≤ 1 +lwithk 1 < 1 l, (ii) the Fourier
integral in the limitl 1 → 1 ∞
(i) The Fourier series
Figure 15.13 shows that the function is an
evenfunction of x, and it can therefore be
represented in the interval−l 1 ≤ 1 x 1 ≤ 1 +lby the
Fourier cosine series
where and, forn 1 > 10 ,
a
l
fx
nx
l
dx
A
l
nx
l
dx
Ak
l
n
lk
===
222
00
ZZ()cos cos
ππsiin( )
()
nkl
nkl
π
π
a
Ak
l
0
2
=
fx
a
a
nx
l
n
n
()=+ cos
=
∑
0
1
2
∞
π
fx
Akxk
()=
−< <+
for
0 otherwise
v()yfxxydx= ()sin
−
+
1
π
Z
∞
∞
uy()= fx xydx()cos
−
+
1
π
Z
∞
∞
fx()=+uy xy y xydy()cos ()sin
Z
0
∞
v
fx Fy y Fydy
l
n
nn
( ) lim=∆( ) =( )
→
=
∑
∞
∞
∞
0 0
Z
*The ‘derivation’ of (15.69) given here is only an outline, but is sufficient for most purposes; all problems
associated with discontinuities of the function and with the existence of the limit have been ignored.
−l −k 0 +k +l
x
f(x)
A
.............................................................................................................................................................
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
................................................................................................................................................................................................................................
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..............................................................................................................................................................
Figure 15.13