The Chemistry Maths Book, Second Edition

(Grace) #1

15.6 Fourier transforms 435


so that, by the discussion in Section 5.4 of the Riemann integral as the limit of a sum,


Equation (15.65) is then


(15.69)


where, after taking the limit in (15.66) and (15.67),


(15.70)


(15.71)


The representation (15.69) of f(x)is called a Fourier integral(the name Fourier


transform is normally reserved for a slightly different form, as described below).*


EXAMPLE 15.8For the square wave


(15.72)


Find (i) the Fourier series expansion in interval−l 1 ≤ 1 x 1 ≤ 1 +lwithk 1 < 1 l, (ii) the Fourier


integral in the limitl 1 → 1 ∞


(i) The Fourier series


Figure 15.13 shows that the function is an


evenfunction of x, and it can therefore be


represented in the interval−l 1 ≤ 1 x 1 ≤ 1 +lby the


Fourier cosine series


where and, forn 1 > 10 ,


a


l


fx


nx


l


dx


A


l


nx


l


dx


Ak


l


n

lk

===


222


00

ZZ()cos cos


ππsiin( )


()


nkl


nkl


π


π


a


Ak


l


0

2


=


fx


a


a


nx


l


n

n

()=+ cos


=


0

1

2



π


fx


Akxk


()=


−< <+







for


0 otherwise


v()yfxxydx= ()sin



+

1


π


Z




uy()= fx xydx()cos



+

1


π


Z




fx()=+uy xy y xydy()cos ()sin








Z


0


v


fx Fy y Fydy


l


n

nn

( ) lim=∆( ) =( )



=





0 0

Z


*The ‘derivation’ of (15.69) given here is only an outline, but is sufficient for most purposes; all problems


associated with discontinuities of the function and with the existence of the limit have been ignored.


−l −k 0 +k +l


x


f(x)


A


.............................................................................................................................................................

......

.....

....

......

.....

....

......

.....

....

......

.....

....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

................................................................................................................................................................................................................................

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

..............................................................................................................................................................

Figure 15.13

Free download pdf