The Chemistry Maths Book, Second Edition

(Grace) #1

434 Chapter 15Orthogonal expansions. Fourier analysis


The infinite interval


The Fourier series (15.48) for arbitrary interval 2 l,


(15.61)


can be written as


(15.62)


where


A sum like (15.62) can be considered as the sum of


the areas of rectangles of width∆n 1 = 11 and height


c


n

, as illustrated in Figure 15.12,


(15.63)


We now make the the substitutions


(15.64)


Equation (15.61) is then


(15.65)


where, by (15.49) and (15.50) for the Fourier coefficients,


(15.66)


(15.67)


We are now in a position to letl 1 → 1 ∞and∆y


n

1 → 10. Equation (15.65) has the form


(15.68)
fx Fy y

n

nn

()=∆( )


=


0


v()y ()sin


lb


fx xydx


n

n

l

l

n

==



+

ππ


1


Z


uy


la


fx xydx


n

n

l

l

n

()== ()cos



+

ππ


1


Z


fx


uy


uy xy y xy


n

nnnn

()


()


=+()cos ()sin+





=


0

1

2



v

















∆y


n

y


l


ny


l


nuy


l


ay


l


b


nn nnnn

=,∆=∆ = =


ππ


ππ


,() ,()v


fx c n


n

n

()=∆


=


0


c


a


ca


nx


l


b


nx


l


n


0 nn n

0

2


=, =cos +sin , > 0


ππ


fx c


n

n

()=


=


0


fx


a


a


nx


l


b


nx


l


n

nn

()=+ cos +sin








=


0

1

2



ππ


.

...

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

...

..

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

.

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

.

...

...

..

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

..

...

...

..

...

..

.

.

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

.....................................

.....................................

.....................................

.....................................

..

...

..

...

..

..

...

....
...
..
..
...
..
...
..

....
....
....
.....
....
....
...

0 1 234


···


c ···
0

c
1

c
2

c
3

n


f(n)


Figure 15.12

Free download pdf