The Chemistry Maths Book, Second Edition

(Grace) #1

15.6 Fourier transforms 437


We define the function


(15.78)


It is shown in Example 15.9 that equation (15.69) can then be written as


(15.79)


with equations (15.70) and (15.71) replaced by


(15.80)


EXAMPLE 15.9Derivation of the exponential form


Substitution of the Euler relations (15.77) into (15.69) gives


or, replacingyby−yin the second integral on the right,


From equations (15.70) and (15.71), we have


u(−y) 1 = 1 u(y), v(−y) 1 = 1 −v(y)


Therefore,


where


wv()yuyiy() () fxedy()


ixy

=−








=



+


1


2


1


2 π


Z




=



+

Z




w()ye dy


ixy

fx uy i y e dy


ixy

()=−() ()









1


2


Z




v


fx uy i y e dy u y


ixy

()=−() () (








+−



1


2


1


2


0

ZZ




0

v ))()+−








iyedy


ixy

v


=−








++


1


2


1


2


00

ZZ


∞∞

uy i y e dy uy i y


ixy

() ()vv() ())









edy


ixy

fx uy e e i y e e


ixy ixy ixy ixy

()=+−−()( ) ()(


−−

1


2


0

Z



v ))








dy


w()yfxed() x


ixy

=



+


1


2 π


Z




fx ye dy


ixy

()= ()



+

Z




w


wv()yuyiy=−() ()








1


2

Free download pdf