15.6 Fourier transforms 437
We define the function
(15.78)
It is shown in Example 15.9 that equation (15.69) can then be written as
(15.79)
with equations (15.70) and (15.71) replaced by
(15.80)
EXAMPLE 15.9Derivation of the exponential form
Substitution of the Euler relations (15.77) into (15.69) gives
or, replacingyby−yin the second integral on the right,
From equations (15.70) and (15.71), we have
u(−y) 1 = 1 u(y), v(−y) 1 = 1 −v(y)
Therefore,
where
wv()yuyiy() () fxedy()
ixy
=−
=
−
+
−
1
2
1
2 π
Z
∞
∞
=
−
+
Z
∞
∞
w()ye dy
ixy
fx uy i y e dy
ixy
()=−() ()
−
1
2
Z
∞
∞
v
fx uy i y e dy u y
ixy
()=−() () (
+−
−
1
2
1
2
0
ZZ
∞
∞
0
v ))()+−
iyedy
ixy
v
=−
++
1
2
1
2
00
ZZ
∞∞
uy i y e dy uy i y
ixy
() ()vv() ())
−
edy
ixy
fx uy e e i y e e
ixy ixy ixy ixy
()=+−−()( ) ()(
−−
1
2
0
Z
∞
v ))
dy
w()yfxed() x
ixy
=
−
+
−
1
2 π
Z
∞
∞
fx ye dy
ixy
()= ()
−
+
Z
∞
∞
w
wv()yuyiy=−() ()
1
2