The Chemistry Maths Book, Second Edition

(Grace) #1

15.7 Exercises 441


The real part of this is (see Example 15.10)


(15.86)


If we replace(x,y,a,b)by(t, ω, 1 2 T, ω


0

)in (15.86), we obtain the pair of Fourier


transforms


The second term ofg(ω)is in practice small compared with the first, and the


function then reduces to a Lorentzian centred atω 1 = 1 ω


0

15.7 Exercises


Section 15.2


1.Given the power seriesf(x) 1 = 1 a


0

1 + 1 a


1

x 1 + 1 a


2

x


2

1 +1-, use equation (15.9) to find the


coefficientc


1

ofP


1

(x)in the expansion (15.3) off(x)in Legendre polynomials.



  1. (i) Find the first three terms of the expansion of the function


(Figure 15.16) in Legendre polynomials. (ii) Sketch


graphs of the one-term, two-term, and three-term


representations off(x).


Section 15.3


3.Show that the coefficient ofP


1

(x)in the expansion


isc


1

1 = 13 ij


1

(t)where.


4.Expand in terms of Legendre polynomials (i)cos 1 tx, (ii)sin 1 tx.


5.Find the first nonzero term in the expansion in powers of


12 Rof the potential at point P for the system of three


charges shown in Figure 15.17.


jt


t


t


t


t


1

1


()


sin


=−cos








ecPx


itx

l

ll

=


=


0


()


fx


x


xx


()=


−< <


<<







010


01


if


if


ft e t g


T


T


T


tT

() cos ( )


() (


=,=


+−










−/

ωω


ωω


0

0

22

1


22
11

π
ωωω+









0

22

)T


Regy


a


aby


a


aby


()


() ()


=


+−






++










1


22


2222

π


...................................................................................................................................................................

.

...

...

...

...

..

...

...

...

...

..

...

...

...

...

...

..

...

...

...

..

...

...

...

...

..

...

...

...

...

...

..

...

...

...

..

...

...

...

...

..

...

...

...

..

...

...

...

...

...

..

...

..










o


+q


+q


− 2 q


p


R


r


r


..

..

...

..

...

...

....

....

θ


Figure 15.17


...........

..

..

..

...

..

.

.

..

...

..

..

.

....................................................................................................................................................................................................


.......


........


.......


.......


.......


.......


.......


........


......


.......


........


.......


.......


.......


.......


.......


........


.......


......


........


.......


.......


.......


.......


.......


........


.......


......


........


.......


.......


........


......


.......


........


.......


.......


......


....



  • 1


− 1 +1


0


Figure 15.16

Free download pdf