The Chemistry Maths Book, Second Edition

(Grace) #1

442 Chapter 15Orthogonal expansions. Fourier analysis


6.For the square system of five charges in


Figure 15.18, show that the leading term in


the expansion in powers of 12 Rof the


electrostatic potential at P (in the plane of


the square) isV 1 = 1 qr


2

24 πε


0

R


3

, independent


of orientation.


Section 15.4


7.Confirm the relations (i) (15.33), (ii)


(15.34) and (iii)(15.36).


8.A periodic function with period 2πis


defined by


(i)Draw the graph of the function in the interval− 3 π 1 ≤ 1 x 1 ≤ 13 π. (ii)Find the Fourier series


of the function [Hint:f(x)is an even function of x]. (iii) Use the series to show that


[Hint: substitute a suitable value for xin the series].


9.A function with period 2 πis defined by


f(x) 1 = 1 x, −π 1 < 1 x 1 < 1 π


(i)Draw the graph of the function in the interval− 3 π 1 ≤ 1 x 1 ≤ 13 π.(ii)Find the Fourier


series of the function. [Hint:f(x)is an odd function of x.] (iii) Draw the graphs of the


first four partial sums of the series.


10.A function with period 2πis defined by


f(x) 1 = 1 x


2

, −π 1 < 1 x 1 < 1 π


(i)Draw the graph of the function in the interval− 3 π 1 ≤ 1 x 1 ≤ 13 π. (ii) Find the Fourier series


of the function. (iii) Use the series to show that


11.Show that the Fourier series of the periodic function defined by (see Figure 15.4)


is


11


2


22


13


4


35


6


ππ 57


+−




















sin


cos cos cos


t


ttt












ft


tt


t


()


sin


=


≤≤


−≤≤







if


if


0


00


π


π


π


2

1

1

2

12


1


1


1


4


1


9


1


16


=



=− + − +


=

+


n

n

n



()





π


2

1

2

6


1


1


1


4


1


9


1


16


==++++


=


n

n






π


4


1


1


3


1


5


1


7


=− + − +


fx


x


x


()


||


=


−<<


<<









1


22


0


2


if


if


ππ


π


π


...............................................................................................................................................................................................................................................................................................................................................................................

.

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

...

..

















....

.......

......

......

.......

......

......

.......

......

......

.......

......

......

.......

......

......

.......

......

......

.......

......

......

.......

......

......

.......

......

......

.......

......

.......
...
...
...
..
...
...
..
...
...
..
...
...
...
...
..
...
...
..
...
...
..
...
...
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
...
..
...
...
..
...
...
..
...
.....
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
..

...

..

...

...

..

...

...

..

...

...

...

..

...

...

..

...

...

...

...

..

...

...

..

...

...

..

...

...

...

..

...

...

..

...

...

...

...

..

...

...

..

...

...

..

...

...

...

..

...

...

..

...

...

...

..

...

...

...

..

...

...

..

...

...

...

...

..

...

...

..

.....
.......
.......
.......
......
.......
.......
.......
.......
......
.......
.......
......
........
......
.......
.......
......
.......
.......
.......
......
.......
.......
......
........
......
.......
.......
......
.......
.......
.......
......
.......
.......
......
........
......
.......
......

..
...
...
..
...
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
.

P


+q


+q


+q


+q


− 4 q


θ


r


Figure 15.18

Free download pdf