16.2 Vector algebra 447
EXAMPLE 16.1Show that the diagonals of a parallelogram bisect each other.
In Figure 16.6, C is the midpoint of diagonal OD, and C′is the midpoint of AB.
Then
Also
But Therefore
The midpoints C and C′ therefore coincide.
EXAMPLE 16.2Show that the mean of the position
vectors of the vertices of a triangle is the position vector of
the centroid of the triangle.
In Figure 16.7, the vertices A and B have positions (position
vectors) aand brelative to vertex O (with null position vector
0 ). The mean of the position vectors of the vertices is
therefore
It is shown in Example 16.1 that if C is the mid point of AB then
Therefore
and the mean lies on the line joining the vertex O to the midpoint of the opposite
side. Similarly for the position with respect to the two other vertices, so that X lies at
the point of intersection of these lines, and this is the centroid of the triangle.
0 Exercise 1
OX OC
=2
3
OC
=+().ab 2OX OO OA OB
=++=++=+1
3
1
3
1
3
()()() 0 ab ab
OC′=+ − = + =OC
aba ab1
2
1
2
()()
AB
=ba−−.OC OA AC′=+′=+AB
a1
2
OC OD OA AD
== +=+1
2
1
2
1
2
()()ab
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................a
b
o a
bd
cc
′••
......................................................................................................................................................................................
.............
.........
...
...............
.............
..
.. ...........................................................................................................................................................................
......
.....
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
....
......
.....
....
......
.....
....
.......
........
.......
.......
....
......
.....
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
.....
......
......
.....
......
.
Figure 16.6
.................................................................................................................................................................................................................................................................................................a
b
o a
b
c
x
......................................................................................................................................................................................
.............
.........
...
...............
.............
..
.. ...........................................................................................................................................................................
......
.....
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
....
......
.....
....
......
.....
....
.......
........
.......
.......
....
......
.....
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
.....
......
......
.....
......
.
Figure 16.7