The Chemistry Maths Book, Second Edition

(Grace) #1

448 Chapter 16Vectors


16.3 Components of vectors


The component of a vector in a given direction is the


length of its projection in that direction. In Figure


16.8 the component of aalong the direction OP is the


length


ON 1 = 1 |a| 1 cos 1 θ (16.5)


The concept of component is essential for the practical use of vectors for the solution


of physical problems in three dimensions.


We consider first the simpler case of vectors in a plane. Let the initial and terminal


points of ain the xy-plane be(x


1

, y


1

)and(x


2

, y


2

), as shown in Figure 16.9. The


(cartesian) component of the vector in the x-direction is a


x

1 = 1 x


2

1 − 1 x


1

, and the


component in the y-direction isa


y

1 = 1 y


2

1 − 1 y


1

. These two components are sufficient to


specify the vector uniquely. Thus the length of the vector is , and the


direction is given by the slopea


y

2 a


x

. We write the vector in terms of its cartesian


components as


a 1 = 1 (a


x

, a


y

) (16.6)


Also, if the xand ydirections are described by the unit vectors iand j, as in Figure


16.10, then can be expressed as the sum of the two vectors, in the


x-direction (a


x

times the unit vector iin the x-direction) and in the y-direction,


a 1 = 1 a


x

i 1 + 1 a


y

j (16.7)


More generally, a vector in three dimensions (Figure 16.11) can be specified by its


components, a


x

, a


y

and a


z

, in the three cartesian directions i, j, and k(kis the unit


vector in the z-direction).


We write


a 1 = 1 (a


x

, a


y

, a


z

) 1 = 1 a


x

i 1 + 1 a


y

j 1 + 1 a


z

k (16.8)


QP
=a

y

j


OQ
=a

x

i


a=OP


||a=+aa


xy

22

θ


a


o np


...

..

...

..

...

..

...

...

..

...

..

.......

...........

...........

............

...........

...........

............

...........

..........

.............

..........

...........

............

...........

...........

............

...........

...........

............

...........

..........

.............

..........

...........

............

...........

...........

............

...........

...........

............

...........

..........

.............

..........

...........

............

...........

...........

............

...........

...........

...............

......

.......

.......

......

.

.................................

Figure 16.8


..

..

...

..

..
...
..
...
...
..
...

.
...
..
...
...
..
...

..............
.......
......

....

......

.......

a


a


x

=x


2

−x


1

a


y

=y


2

−y


1

x


y


o x


1

x


2

y


1

y


2

.........

............

...........

...........

............

...........

...........

............

...........

..........

.............

..........

...........

.............

..........

...........

............

...........

..........

......

.......

.......

......

...

..............................

...

......

............

...........

...........

............

..........

...........

............

...........

...........

............

..........

...........

............

...........

...........

............

...........

..........

..

..

...

..

..
...
..
...
...
..
...

.
...
..
...
...
..
...

..............
.......
......

....

......

.......

o


q


p


a


a


x

i


a


y

j


x


y


i


j


...........

............

...........

..........

............

...........

...........

............

...........

..........

............

...........

...........

............

...........

...........

............

..........

..........

......

.......

.......

......

...

.............................

....

......

............

...........

...........

............

..........

...........

............

...........

...........

............

..........

...........

............

...........

...........

............

...........

..........

..........................................................................................................................................................................................

.............

...............

....

.............

...............

.....

..............................................................................................................................................................................................

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......

.....

......

.....

.....

......

...

...

.....

......

.....

.....

......

...

...

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...


.....


......


....


.....


......


....


.....


......


....


.....


......


....


.....


......


....


.....


.....


..........
......
.....
......
.....
.....
.

.....
......
.....
.....
......
.....
.

..................................................................................................
...............
.............

........


.............


............


Figure 16.9 Figure 16.10

Free download pdf