448 Chapter 16Vectors
16.3 Components of vectors
The component of a vector in a given direction is the
length of its projection in that direction. In Figure
16.8 the component of aalong the direction OP is the
length
ON 1 = 1 |a| 1 cos 1 θ (16.5)
The concept of component is essential for the practical use of vectors for the solution
of physical problems in three dimensions.
We consider first the simpler case of vectors in a plane. Let the initial and terminal
points of ain the xy-plane be(x
1
, y
1
)and(x
2
, y
2
), as shown in Figure 16.9. The
(cartesian) component of the vector in the x-direction is a
x
1 = 1 x
2
1 − 1 x
1
, and the
component in the y-direction isa
y
1 = 1 y
2
1 − 1 y
1
. These two components are sufficient to
specify the vector uniquely. Thus the length of the vector is , and the
direction is given by the slopea
y
2 a
x
. We write the vector in terms of its cartesian
components as
a 1 = 1 (a
x
, a
y
) (16.6)
Also, if the xand ydirections are described by the unit vectors iand j, as in Figure
16.10, then can be expressed as the sum of the two vectors, in the
x-direction (a
x
times the unit vector iin the x-direction) and in the y-direction,
a 1 = 1 a
x
i 1 + 1 a
y
j (16.7)
More generally, a vector in three dimensions (Figure 16.11) can be specified by its
components, a
x
, a
y
and a
z
, in the three cartesian directions i, j, and k(kis the unit
vector in the z-direction).
We write
a 1 = 1 (a
x
, a
y
, a
z
) 1 = 1 a
x
i 1 + 1 a
y
j 1 + 1 a
z
k (16.8)
QP
=a
y
j
OQ
=a
x
i
a=OP
||a=+aa
xy
22
θ
a
o np
...
..
...
..
...
..
...
...
..
...
..
.......
...........
...........
............
...........
...........
............
...........
..........
.............
..........
...........
............
...........
...........
............
...........
...........
............
...........
..........
.............
..........
...........
............
...........
...........
............
...........
...........
............
...........
..........
.............
..........
...........
............
...........
...........
............
...........
...........
...............
......
.......
.......
......
.
.................................
Figure 16.8
..
..
...
..
..
...
..
...
...
..
...
.
...
..
...
...
..
...
..............
.......
......
....
......
.......
a
a
x
=x
2
−x
1
a
y
=y
2
−y
1
x
y
o x
1
x
2
y
1
y
2
.........
............
...........
...........
............
...........
...........
............
...........
..........
.............
..........
...........
.............
..........
...........
............
...........
..........
......
.......
.......
......
...
..............................
...
......
............
...........
...........
............
..........
...........
............
...........
...........
............
..........
...........
............
...........
...........
............
...........
..........
..
..
...
..
..
...
..
...
...
..
...
.
...
..
...
...
..
...
..............
.......
......
....
......
.......
o
q
p
a
a
x
i
a
y
j
x
y
i
j
...........
............
...........
..........
............
...........
...........
............
...........
..........
............
...........
...........
............
...........
...........
............
..........
..........
......
.......
.......
......
...
.............................
....
......
............
...........
...........
............
..........
...........
............
...........
...........
............
..........
...........
............
...........
...........
............
...........
..........
..........................................................................................................................................................................................
.............
...............
....
.............
...............
.....
..............................................................................................................................................................................................
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
......
.....
.....
......
...
...
.....
......
.....
.....
......
...
...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
...
.....
......
....
.....
......
....
.....
......
....
.....
......
....
.....
......
....
.....
.....
..........
......
.....
......
.....
.....
.
.....
......
.....
.....
......
.....
.
..................................................................................................
...............
.............
........
.............
............
Figure 16.9 Figure 16.10