16.4 Scalar differentiation of a vector 453
(i)d 1 = 12 a 1 + 13 b 1 = 1 2(2i 1 + 13 j 1 + 1 k) 1 + 1 3(i 1 − 12 j) 1 = 1 (4i 1 + 16 j 1 + 12 k) 1 + 1 (3i 1 − 16 j)
= 17 i 1 + 12 k
(ii)Vectorb 1 = 1 i 1 − 12 jlies in thexy-plane, vectork lies along the z-direction. Therefore
λk(any λ) is perpendicular to b.
(iii) Vector dlies in the xz-plane, andλjis perpendicular to d.
0 Exercises 13, 14
Although the cartesian unit vectors provide the most widely used representation of
vectors in three dimensions, other representations are sometimes more useful. Thus,
any three noncoplanar vectors can be used as base. If a, band care three such vectors,
not necessarily unit vectors or perpendicular, then any other vector in the space can
be written
u 1 = 1 u
a
a 1 + 1 u
b
b 1 + 1 u
c
c (16.20)
The numbersu
a
,u
b
, andu
c
are the components ofu
along the directions of the base vectors. An example
of the use of non-cartesian bases is found in
crystallography in the description of the properties
of regular lattices. In this case a, band cdefine the
crystal axes and the unit cell, and every lattice point
has position vector (16.20) with components that
are integers. This is illustrated in Figure 16.15 for a
planar lattice.
16.4 Scalar differentiation of a vector
A vectora 1 = 1 a(t)is a function of the scalar variable
tif its magnitude or its direction, or both, depends
on the value of t. In Figure 16.16, and
are the vectors for values tandt 1 + 1 ∆t
of the variable. The change in the vector in interval
∆tis
∆a 1 = 1 a(t 1 + 1 ∆t) 1 − 1 a(t)
and the derivative of the vector with respect to tis
defined in the usual way by the limit (if the limit exists)
(16.21)
Taking the limit corresponds to letting point B approach point A along the curve
defined bya(t). The direction of approaches that of the tangent to the curve
at A, and this is the direction of the derivative at A.
AB
=∆a
d
dt t
tt t
tt
aaaa
=
∆
∆
=
+∆ −
∆
→→
lim lim
()()
∆∆ 00
tt
OB
=+a()tt∆
OA
=a()t
•••
•••
•••
•••
a
b
2 a+ 2 b
a+3b
....
.............
............
............
.............
............
...........
..............
............
...........
..............
...........
............
..............
...........
............
.............
............
............
.............
............
............
.............
............
............
.............
............
............
.............
............
............
.............
............
............
.............
............
...........
..............
............
...........
..............
...........
............
......
.......
.......
.......
.......
.......
.......
............... ...................
..........
..................................................................................................................................................................................................................
.............
...............
......
....
...............
.............
............
..
......
.....
.....
......
.....
.....
......
.....
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
.....
..
....
.....
......
....
.....
......
....
.....
....
.
......
.......
.......
......
.......
.......
...
..
........
.......
.......
.......
.......
.......
.......
.......
.......
........
......
.......
........
.......
......
........
.......
.......
.......
.......
.......
.......
.......
.......
........
......
.......
........
.......
......
........
.......
.......
.......
.......
.......
........
......
.......
........
.......
......
........
.......
.......
.......
.......
.......
.......
.......
.......
........
......
.......
........
.......
......
........
.......
.......
.......
.......
.......
.......
......
.....
......
.....
.....
......
.....
...
.......
............
............
.............
Figure 16.15
o
a
b
a(t)
a(t+∆ t)
∆ a
da
dt
...
..
...
..
...
...
..
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
...
..
...
...
..
...
..
...
...
...
..
...
...
..
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
....
...
...
...
....
...
...
....
...
....
...
....
....
....
....
....
....
....
.....
....
....
......
....
.....
......
......
.....
.......
.......
........
.....
......................
........................
........................
...........................
........................
........................
...........................
........................
........................
...........................
.....................
..........
........
.........
...........
......................
..........
........................
...........................
........................
........................
...........................
........................
......
......
......
......
.......
......
......
......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
......
.......
......
......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
......
......
..
.....
.....
.....
.....
......
.....
.
.
.........
..........
..........
...
......
.......
......
......
.......
......
......
.......
......
......
......
......
......
.......
......
......
.......
......
......
.......
......
......
......
......
......
.......
......
....
......
......
......
.....
.......
.....
......
......
......
......
......
......
.....
.......
......
.....
.......
.....
......
......
......
......
......
......
.....
.......
.....
......
.......
.....
.......
........
.........
........
....
..
.....
......
.....
.....
.....
.....
....
......
......
......
......
......
.....
.......
......
.....
.......
.....
......
......
......
......
......
......
......
......
.....
..
........
.........
........
........
.........
.........
........
.........
........
........
.........
........
........
.........
........
........
.........
........
........
.........
........
........
.........
........
........
..........
..................
........
..
......
......
......
......
.....
..
Figure 16.16