The Chemistry Maths Book, Second Edition

(Grace) #1

454 Chapter 16Vectors


In terms of the components of the vector, ifa 1 = 1 a


x

i 1 + 1 a


y

j 1 + 1 a


z

k, wherei,j,andk


are (constant) base vectors, the dependence ofaon tis that of the components:


a(t) 1 = 1 a


x

(t)i 1 + 1 a


y

(t)j 1 + 1 a


z

(t)k (16.22)


and


(16.23)


EXAMPLE 16.8Findda 2 dtandd


2

a 2 dt


2

fora(t) 1 = 13 t


2

i 1 + 121 sin 1 t 1 j 1 + 1 e


−t

k.


0 Exercises 15, 16


We note that the base vectors may also depend on tif the coordinate system itself (the


frame of reference) is undergoing changes


Parametric representation of a curve


Ifr 1 = 1 r(t)is the position vector of a point for each value of tin some interval then,


given a cartesian coordinate system,


r(t) 1 = 1 x(t)i 1 + 1 y(t)j 1 + 1 z(t)k (16.24)


is a parametric representation of a curve C in


three-dimensional space, and tis the parameter of the


representation (Figure 16.17). The sense of increasing


values of tis called the positive sense on C, and defines a


direction on the curve.


When the parameter tis the time variable, derivatives


of position vectors provide a general method for the


description of the mechanics of dynamic systems.


EXAMPLE 16.9Velocity, acceleration, momentum and force


Velocity and acceleration


Ifr 1 = 1 r(t)is the position vector of a body in space, and the parameter tis the time


variable, thendr 2 dtis the velocity of the body,


v== (16.25)







 +







 +







 =


d


dt


dx


dt


dy


dt


dz


dt


r


ijkvvv v


xy z

ijk++


d


dt


tte


d


dt


te


t

a


ijk


a


=+ − =−ij+



62 62


2

2

cos , sin


−−t

k


d


dt


da


dt


da


dt


da


dt


x

y

z

a


= ij




































k


...
....
...
....
...
....
...
....
...
....
....
...
...
....
..

C


o






z


y


x


r(t)


t


.

................................

...

......

.......

......

......

..

..

.............................................

............

..........

........

........

.......

......

.......

......

......

......

......

.....

......

......

......

.....

.......

.....

......

.......

......

......

.......

....

.....

.....

.....

.....

......

......

......

........

........

..........

...............

.........................................

...............

.........

........

.......

.....

......

.....

....

.....

.

..

........

..........

.........

........

..........

.........

........

..........

.........

.........

.........

.........

.........

.........

.........

.........

..........

........

.........

..........

........

.........

..........

........

.........

..........

........

.........

.....

......

......

......

......

......

.

.......

.......................

...

Figure 16.17

Free download pdf