48 Chapter 2Algebraic functions
once. In general it has an odd number of real roots. A polynomial of even degree
(n 1 = 1 2, 4, 6, =) has an even number of real roots, or no real roots if the curve does not
cross the x-axis.
EXAMPLE 2.22Factorization of a cubic
A polynomial of degree 3 can have all three roots real or it can have one real root and
two complex roots; for example, in Figure 2.11,
(a) three real roots: x
3
1 − 16 x
2
1 + 111 x 1 − 161 = 1 (x 1 − 1 1)(x 1 − 1 2)(x 1 − 1 3)
(b) three real roots, one double: x
3
1 − 15 x
2
1 + 17 x 1 − 131 = 1 (x 1 − 1 1)
2
(x 1 − 1 3)
(c) one real root and two complex roots: x
3
1 − 13 x
2
1 + 14 x 1 − 121 = 1 (x 1 − 1 1)(x
2
1 − 12 x 1 + 1 2)
The roots of the quadratic factor are 11 ± 1 i, where
x
2
1 − 12 x 1 + 121 = 1 [x 1 − 1 (1 1 + 1 i)][x 1 − 1 (1 1 − 1 i)]
and the fully factorized form of the cubic is
x
3
1 − 13 x
2
1 + 14 x 1 − 121 = 1 (x 1 − 1 1)(x 1 − 111 − 1 i)(x 1 − 111 + 1 i)
EXAMPLE 2.23Given that x 1 − 11 is a factor, find the roots of the cubic
x
3
1 − 17 x
2
1 + 116 x 1 − 110.
Ifx 1 − 11 is a factor then the cubic function can be written as
x
3
1 − 17 x
2
1 + 116 x 1 − 1101 = 1 (x 1 − 1 1)(ax
2
1 + 1 bx 1 + 1 c)
= 1 ax
3
1 + 1 (b 1 − 1 a)x
2
1 + 1 (c 1 − 1 b)x 1 − 1 c
For this equation to true for all values of xit is necessary that the coefficient of each
power of xbe the same on both sides of the equal sign:
11 = 1 a, − 71 = 1 b 1 − 1 a,16 1 = 1 c 1 − 1 b, − 101 = 1 −c
i=−1,
y
x
1
2
3
•••
(a)
..
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
....
......
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
......
......
.....
......
.......
.......
..........
...........
............
........
........
.......
.......
........
.......
.......
........
........
..............
......
............
.......
.......
.....
......
......
.....
......
.....
......
.....
.....
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
....
......
.....
.....
.....
.....
.....
.....
...
y
x
13
••
(b)
....
...........
..........
..........
...........
.........
..........
...........
..........
.........
...........
..........
..........
...........
..........
.........
...........
..........
..........
...........
..........
.........
...........
..........
...........
..........
..........
...........
..........
.........
............
.........
..........
...........
..........
..........
..........
...........
..........
..........
...........
..........
............
..........
..........
............
..........
..........
............
...........
...........
.............
.............
...............
............................................
.................
...............
...............
............
.............
.............
.............
............
.............
............
.............
..............
............
..............
................
..................
........................................
................
..............
............
...........
............
...........
..........
............
..........
..........
............
..........
..........
...........
..........
..........
...........
..........
..........
...........
..........
..........
...........
..........
..........
...........
.........
..........
...........
..........
..........
...........
..........
.........
...........
..........
..........
...........
..........
.........
...........
..........
..........
...........
.........
..........
...........
..........
.........
...........
..........
..........
...........
..........
.........
...........
..........
.........
...........
..........
..........
...........
.........
..........
...........
..........
.........
...........
..........
..........
...........
.........
..........
...........
.........
y
x
1
(c)
...
..........
...........
..........
..........
...........
.........
..........
...........
..........
..........
...........
..........
.........
...........
..........
..........
...........
..........
..........
...........
..........
...........
..........
..........
...........
..........
..........
...........
..........
..........
...........
..........
..........
..........
............
..........
..........
............
..........
............
..........
...........
............
..........
...........
.............
...........
............
.............
............
.............
..............
.............
..............
...............
..............
.............
...............
............
............
..............
...........
............
............
...........
...........
............
..........
...........
...........
...........
..........
............
..........
..........
...........
..........
..........
............
..........
..........
...........
..........
..........
...........
..........
..........
...........
..........
..........
...........
.........
..........
...........
..........
..........
...........
..........
..........
...........
.........
..........
...........
..........
..........
...........
.........
..........
...........
....
Figure 2.11