2.5 Polynomials 49
Thena 1 = 11 ,b 1 = 1 − 6 ,c 1 = 110 , and the quadratic factor is
x
2
1 − 16 x 1 + 1 10 with roots
(see also Examples 2.25 and 2.26). The cubic is therefore of
type (c) in Example 2.22, with one real root,x
1
1 = 12 and the
two complex rootsx
2
1 = 131 + 1 iandx
3
1 = 131 − 1 i. The graph of the
function, Figure 2.12, shows however that, like types (a) and
(b), the function has local maximum and minimum values
(or turning points; see Section 4.10) at x 1 = 12 and x 1 = 1823 ,
respectively.
0 Exercises 53–55
EXAMPLE 2.24Factorization of a quartic
Three cases may be considered.
(i) 4 real roots; for example
x
4
1 − 1 x
3
1 − 17 x
2
1 + 1 x 1 + 161 = 1 (x 1 − 1 1)(x 1 + 1 1)(x 1 + 1 2)(x 1 − 1 3)
(ii) 2 real roots and 2 complex roots; for example
x
4
1 − 12 x
3
1 + 1 x
2
1 + 12 x 1 − 121 = 1 (x 1 − 1 1)(x 1 + 1 1)(x
2
1 − 12 x 1 + 1 2)
= 1 (x 1 − 1 1)(x 1 + 1 1)(x 1 − 111 − 1 i)(x 1 − 111 + 1 i)
(iii) 4 complex roots; for example
x
4
1 − 12 x
3
1 + 13 x
2
1 − 12 x 1 + 121 = 1 (x
2
1 + 1 1)(x
2
1 − 12 x 1 + 1 2)
= 1 (x 1 − 1 i)(x 1 + 1 i)(x 1 − 111 − 1 i)(x 1 − 111 + 1 i)
0 Exercise 56
Examples 2.22 to 2.24 demonstrate that, if complex numbers are disallowed, a polynomial
can always be factorized as the product of some linear factors, one for each real root,
and, at most, quadratic factors, all real.
6
The theorem is used in Section 2.7 for the
construction of partial fractions.
xi=
±−
=±
63640
2
3
y
x
1
2
8 / 3
••
...
...
..
...
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
...
..
..
.
...
..
..
...
...
..
...
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
...
..
..
.
....
.....
......
....
.....
......
....
.....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
....
.....
......
.....
.....
.....
.....
.....
.....
.....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
......
.....
.......
......
........
....................................
...........
...........
....................................
........
......
.......
.....
......
......
.....
.....
......
.....
......
.....
.....
.....
......
.....
.....
......
....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.
Figure 2.12
6
This is the statement of the fundamental theorem of algebra given in Gauss’ first proof of 1799.