2.5 Polynomials 49
Thena 1 = 11 ,b 1 = 1 − 6 ,c 1 = 110 , and the quadratic factor is
x
21 − 16 x 1 + 1 10 with roots
(see also Examples 2.25 and 2.26). The cubic is therefore of
type (c) in Example 2.22, with one real root,x
11 = 12 and the
two complex rootsx
21 = 131 + 1 iandx
31 = 131 − 1 i. The graph of the
function, Figure 2.12, shows however that, like types (a) and
(b), the function has local maximum and minimum values
(or turning points; see Section 4.10) at x 1 = 12 and x 1 = 1823 ,
respectively.
0 Exercises 53–55
EXAMPLE 2.24Factorization of a quartic
Three cases may be considered.
(i) 4 real roots; for example
x
41 − 1 x
31 − 17 x
21 + 1 x 1 + 161 = 1 (x 1 − 1 1)(x 1 + 1 1)(x 1 + 1 2)(x 1 − 1 3)
(ii) 2 real roots and 2 complex roots; for example
x
41 − 12 x
31 + 1 x
21 + 12 x 1 − 121 = 1 (x 1 − 1 1)(x 1 + 1 1)(x
21 − 12 x 1 + 1 2)
= 1 (x 1 − 1 1)(x 1 + 1 1)(x 1 − 111 − 1 i)(x 1 − 111 + 1 i)
(iii) 4 complex roots; for example
x
41 − 12 x
31 + 13 x
21 − 12 x 1 + 121 = 1 (x
21 + 1 1)(x
21 − 12 x 1 + 1 2)
= 1 (x 1 − 1 i)(x 1 + 1 i)(x 1 − 111 − 1 i)(x 1 − 111 + 1 i)
0 Exercise 56
Examples 2.22 to 2.24 demonstrate that, if complex numbers are disallowed, a polynomial
can always be factorized as the product of some linear factors, one for each real root,
and, at most, quadratic factors, all real.
6The theorem is used in Section 2.7 for the
construction of partial fractions.
xi=
±−
=±
63640
2
3
y
x
1
2
8 / 3
••
.............................................................................................................................................
.....
......
....
.....
......
....
.....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
....
.....
......
.....
.....
.....
.....
.....
.....
.....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
......
.....
.......
......
........
....................................
...........
...........
....................................
........
......
.......
.....
......
......
.....
.....
......
.....
......
.....
.....
.....
......
.....
.....
......
....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.
Figure 2.12
6This is the statement of the fundamental theorem of algebra given in Gauss’ first proof of 1799.