The Chemistry Maths Book, Second Edition

(Grace) #1

2.5 Polynomials 49


Thena 1 = 11 ,b 1 = 1 − 6 ,c 1 = 110 , and the quadratic factor is


x


2

1 − 16 x 1 + 1 10 with roots


(see also Examples 2.25 and 2.26). The cubic is therefore of


type (c) in Example 2.22, with one real root,x


1

1 = 12 and the


two complex rootsx


2

1 = 131 + 1 iandx


3

1 = 131 − 1 i. The graph of the


function, Figure 2.12, shows however that, like types (a) and


(b), the function has local maximum and minimum values


(or turning points; see Section 4.10) at x 1 = 12 and x 1 = 1823 ,


respectively.


0 Exercises 53–55


EXAMPLE 2.24Factorization of a quartic


Three cases may be considered.


(i) 4 real roots; for example


x


4

1 − 1 x


3

1 − 17 x


2

1 + 1 x 1 + 161 = 1 (x 1 − 1 1)(x 1 + 1 1)(x 1 + 1 2)(x 1 − 1 3)


(ii) 2 real roots and 2 complex roots; for example


x


4

1 − 12 x


3

1 + 1 x


2

1 + 12 x 1 − 121 = 1 (x 1 − 1 1)(x 1 + 1 1)(x


2

1 − 12 x 1 + 1 2)


= 1 (x 1 − 1 1)(x 1 + 1 1)(x 1 − 111 − 1 i)(x 1 − 111 + 1 i)


(iii) 4 complex roots; for example


x


4

1 − 12 x


3

1 + 13 x


2

1 − 12 x 1 + 121 = 1 (x


2

1 + 1 1)(x


2

1 − 12 x 1 + 1 2)


= 1 (x 1 − 1 i)(x 1 + 1 i)(x 1 − 111 − 1 i)(x 1 − 111 + 1 i)


0 Exercise 56


Examples 2.22 to 2.24 demonstrate that, if complex numbers are disallowed, a polynomial


can always be factorized as the product of some linear factors, one for each real root,


and, at most, quadratic factors, all real.


6

The theorem is used in Section 2.7 for the


construction of partial fractions.


xi=


±−



63640


2


3


y


x


1


2


8 / 3


••












...

...

..

...

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

...

..

..

.

...

..

..

...

...

..

...

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

...

..

..

.

....

.....

......

....

.....

......

....

.....

......

.....

....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......

....

.....

......

.....

.....

.....

.....

.....

.....

.....

......

.....

....

......

.....

.....

.....

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

......

.....

.......

......

........

....................................

...........

...........

....................................

........

......

.......

.....

......

......

.....

.....

......

.....

......

.....

.....

.....

......

.....

.....

......

....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

.....

.....

.....

.....

......

.....

.

Figure 2.12


6

This is the statement of the fundamental theorem of algebra given in Gauss’ first proof of 1799.

Free download pdf