616 Chapter 21Probability and statistics
The function is symmetric aboutx 1 = 1 μ. It is broad when σis large and narrow when
σis small, and it falls to about 0.6 of its maximum value whenx 1 = 1 ±σ, the points of
inflection of the function.
Errors
The Gaussian distribution is important in the sciences because it describes the
distribution of errors in a sequence of random experiments.
4
Measurements, however
accurately made, are always accompanied by errors. They are of two kinds: determinate
and random. Determinate errors may be simply mistakes or they may be systematic
errors due to faulty or incorrectly calibrated apparatus. It is usually possible to discover
the causes of such errors, and either to eliminate them or make corrections for them.
Random errors, on the other hand, are indeterminate. They may be due to the ‘shaky
hand’, the imperfect resolution of an instrument, the unpredictable fluctuations of
temperature or voltage.
Errors are in general due to several or many causes. The central limit theoremof
probability theory tells us that a variable produced by the cumulative effect of several
independent variables is approximately Gaussian or ‘normal’. Many observed quantities
are of this kind; for example, anatomical measurements such as height or length of
nose are due to the combined effects of many genetic and environmental factors, and
their distributions are Gaussian. In addition, many theoretical distributions behave
like Gaussian distributions when the numbers are large. The binomial distribution
tends to a Gaussian withμ 1 = 1 npand asn 1 → 1 ∞. Random numbers
have a uniform distribution when considered singly. If taken nat a time, however,
they have a distribution that becomes Gaussian as nbecomes large.
The distribution function
The probability distribution functionF(x)of the Gaussian distribution is defined by
(21.40)
Fx xdx e dx
xx
x
() ()
()
==
−−
−
ZZ
∞∞
ρ
σ
μσ
1
2
22
2
π
σ=−np p()1
σ= 0. 5
σ=1. 0
σ=2. 5
..
...
..
...
...
..
...
...
..
..
..
..
...
...
..
...
...
..
..
.....
.......
.........
...
.....
........
........
.
x
ρ(x)
μ− 3 μ− 2 μ− 1 μ μ+1 μ+2 μ+3
.....................................
...............................
...............................
..................................
..............................
...............................
...................................
.................................
.........................................
...........................................
.............................................................
.............................................................................................................................................................
............................................................
...........................................
.........................................
.................................
................................
..................................
..............................
..............................
...................................
...............................
.....................................
..............................................................................................
..........................................
.......................
..................
.................
............
............
............
..........
.........
..........
........
.........
........
........
........
........
.......
........
.......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
........
.......
........
........
.........
........
..........
...........
............
.............................................................
............
..........
...........
........
........
.........
.......
........
........
.......
.......
........
......
.......
........
.......
......
........
.......
.......
.......
.......
.......
........
.......
.......
........
.......
.......
.........
........
........
.........
........
..........
.........
..........
............
...........
.............
.................
.................
.......................
...........................................
............................................................................................................................................................................................................................................................................... .............................................................................................
....................
............
.........
.........
......
.......
.......
......
......
.......
.....
.....
......
......
.....
......
.....
......
......
.....
.....
......
.....
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
....
.....
......
.....
.....
......
....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
......
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
......
......
......
........................
.......
......
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
......
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
....
.....
......
.....
.....
......
.....
....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
......
.....
......
.....
.....
......
......
......
......
......
........
......
.......
.........
.........
...........
....................
...............................................................................................................................................................................................................................................................................
Figure 21.7
4
The first description of the normal law of errors was by de Moivre in 1738. It was derived by Gauss in his
Theory of motion of the heavenly bodiesof 1809 from a principle of maximum probability: ‘if any quantity has been
determined by several observations, made under the same circumstances and with equal care, the arithmetical
mean of the observed values affords the most probable value’. Gauss considered the function (21.39) to be the
‘correct’ error function because he was able to derive from it the principle of least squares. Laplace gave an
alternative derivation of the normal law in 1810, and included it in his 1812 Analytical theory of probability.