The Chemistry Maths Book, Second Edition

(Grace) #1

21.8 The Gaussian distribution 617


so thatF(a)is the probability that the variable has valuex 1 < 1 a, and


(21.41)


for unit total probability. The probability that the variable has a value in the interval


a 1 < 1 x 1 < 1 bis then


(21.42)


and this is the area under the curve betweenx 1 = 1 aandx 1 = 1 b.


The integral in (21.40) cannot be evaluated by the methods of the calculus


described in Chapters 5 and 6, but extensive tabulations are found in most statistics


texts. These tabulations are of the auxiliary function


(21.43)


obtained from (21.40) by means of the substitution. Then


and


(21.44)


It is found from these tabulations that the probabilities that xlies withinσ, 2 σ,and


3 σof the mean are


P(μ 1 − 1 σ 1 < 1 x 1 < 1 μ 1 + 1 σ) = 1 0.6827


P(μ 1 − 12 σ 1 < 1 x 1 < 1 μ 1 + 12 σ) 1 = 1 0.9545 (21.45)


P(μ 1 − 13 σ 1 < 1 x 1 < 1 μ 1 + 13 σ) 1 = 1 0.9973


Therefore, about 68% of observed values are expected to lie within one standard


deviation of the mean (Figure 21.8), 95% within two standard deviations, and almost


all within three standard deviations.


Pa x b


ba


()<< =

















ΦΦ


μ


σ


μ


σ


Fx


x


()=









Φ


μ


σ


z


x


=


−μ


σ


Φ()zedz


z

z

=




1


2


2

2

π


Z



Pa x b Fb Fa e dx


a

b

x

()()()


()

<< = − =



1


2


22

2

σ


μσ

π


Z


Fx() ()→= xdx=






Z ρ 1


.......
........
.......
..

....

.......

.......

....

x


μ
μ− 3 σμ− 2 σμ−σ μ+σμ+ 2 σμ+3σ

68%


16% 16%


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................

.....................

.............

..........

.......

.......

......

.....

.....

....

.....

....

....

....

...

....

....

...

....

...

....

...

...

...

....

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

....

..

...

....

...

...

...

...

...

....

...

...

....

...

....

....

...

....

.....

......

........

..........
........
......
.....
....
...
....
....
...
....
...
...
....
...
...
...
...
...
....
..
...
....
...
...
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
...
...
....
...
...
....
...
...
....
...
....
....
...
....
....
....
.....
....
.....
.....
......
.......
.......
..........
............
......................
..................

....
........
........
........
........
........
........
.........
.......
........
.........
........
.......
.........
........
........
........
........
........
................

.....

.....

.......

....

.......................

.....

.....
........
.........
.........
........
.........
........
.........
.........
........
.........
.........
........
........
.........
.........
..

......

......

.....

.......

...

..

..........................

.....
........
........
..........
........
.........
........
.........
.........
........
.........
.........
........
........
.........
.........
...

..........................
.

......

......

.....

.......

...

Figure 21.8

Free download pdf