The Chemistry Maths Book, Second Edition

(Grace) #1

Solutions to exercises 633


Chapter 3


Section 3.2


1.c 1 = 113 ,



  1. (i) 1 (ii) 1

  2. (i)π 236 (ii) 29 π 260 (iii) 2 π 23


(iv) (v) 3 π (vi) 4 π



  1. (i)18° (ii)45° (iii)30°


(iv)60° (v)67.5° (vi)157.5°



  1. (i) 32 2 rad 1 ≈ 1 85.94° (ii) 2 π 251 ≈ 1 1.257


(iii) 2 π 1 ≈ 1 6.283 (iv) 8 π 1 ≈ 1 25.13



  1. (i)sin 13 π 241 = 1 , cos 13 π 241 = 1 ,


tan 13 π 241 = 1 − 1


(ii)sin 15 π 241 = 1 , cos 15 π 241 = 1 ,


tan 15 π 241 = 1 + 1


(iii)sin 17 π 241 = 1 ,cos 17 π 241 = 1 ,


tan 17 π 241 = 1 − 1



  1. (i)π (ii) 2 π 23


Section 3.3



  1. (i)π 26 (ii)π 22 (iii)π 23


(iv)π


13.sin


− 1

(1 2 4) 1 ≈ 1 14.48°,sin


− 1

(1 2 2) 1 = 1 30°,


sin


− 1

(3 2 4) 1 ≈ 1 48.59°,sin


− 1

(1) 1 = 1 90°


Section 3.4


14.C 1 = 15 π 2121 = 1 75°,,


1


15.A 1 = 1 cos


− 1

(0.75) 1 ≈ 1 41.41°,


B 1 = 1 cos


− 1

(0.5625) 1 ≈ 1 55.77°,


C 1 = 1 π 1 − 1 A 1 − 1 B 1 ≈ 1 82.82°


16.c 1 ≈ 1 2.8336,A 1 ≈ 1 48.47°,B 1 ≈ 1 86.53°






B 1 = 1 π 1 − 1 π 241 − 1 A 1 ≈ 1 108.43°



  1. (i)sin 17 θ 1 = 1 sin 15 θ 1 cos 12 θ 1 + 1 cos 15 θ 1 sin 12 θ


(ii)sin 13 θ 1 = 1 sin 15 θ 1 cos 12 θ 1 − 1 cos 15 θ 1 sin 12 θ


(iii)cos 17 θ 1 = 1 cos 15 θ 1 cos 12 θ 1 − 1 sin 15 θ 1 sin 12 θ


(iv)cos 13 θ 1 = 1 cos 15 θ 1 cos 12 θ 1 + 1 sin 15 θ 1 sin 12 θ


c== š



5252657


1

, cos ( ). , A


c=°≈2 75 1 3660sin.


b= 32


+ 12
− 12

− 12 − 12


− 12
+ 12

13


9


π


cosec B=,B=,B=


13


5


13


12


12


5


sec cot


sin =,cos =,tan BBB=,


5


13


12


13


5


12


cosec A=,A=,A=


13


12


13


5


5


12


sec cot


sin =,cos =,tan AAA=,


12


13


5


13


12


5



  1. (i)sin 13 θ 1 = 131 sin 1 θ 1 − 141 sin


3

1 θ


(ii)cos 13 θ 1 = 141 cos


3

1 θ 1 − 131 cos 1 θ



  1. (i)cos


2

12 x 1 − 1 sin


2

12 x (ii) 11 − 121 sin


2

12 x


(iii)2cos


2

12 x 1 − 11


(iv) 11 − 181 sin


2

1 x 1 + 181 sin


4

1 x


(v) 11 − 181 cos


2

1 x 1 + 181 cos


4

1 x


21.0.9396



  1. (i)


(ii)



  1. (i)


(ii)



  1. (i)sin 1 (π 1 ± 1 θ) 1 = 1


3
sin 1 θ

(ii)cos 1 (π 1 ± 1 θ) 1 = 1 −cos 1 θ



  1. (i)t 1 = 1 n 2 2,n 1 = 10 , 1 , 2 ,=


(ii)t 1 = 1 (2n 1 + 1 1) 24 ,n 1 = 10 , 1 , 2 ,=


Section 3.5



  1. (i) (ii)

  2. (i) (ii)

  3. (i)


(ii)



  1. (i)


(ii)


Section 3.6



  1. (i)e


5

(ii) 1 (iii) 12 e


(iv)e (v)e


9


  1. (i)


(ii)0.71653



  1. (i)


(ii)0.999000499833,4 terms


(iii)0.999999000001,3 terms


(iv)0.999999999000,2 terms


(v)0.999999999999,2 terms


(vi)1.00000000000, 1 term



  1. (i) (ii) 1


Section 3.7



  1. (i) 2 (ii) 4 (iii)− 5 (iv)x


2

(v)−(ax


2

1 + 1 bx 1 + 1 c) (vi)−kt


nn e


ij

kT

ij

=


−−()εε

1


2 6 24 120


3

6 9 12 15

−+−+ −x


xxx x


1


3 18 162 1944 29160


23 4 5

−+ − + −


xx x x x


13 2 3 213 7


1

,
()

+≈.



tan π °


13 2 3 146 3


1

,−
()

+≈



tan π .°


13 2 3 2 326 3


1

,−
()

+≈



tan π .°


13 2 3 33 7


1

,
()

≈.



tan °


−,−
()

−, 32 3 32
()

32 3 32


32 3 32,−
()

32 3 32,
()

1

2

cos 28 xx+cos
()

1

2

cos 28 xx−cos
()

1

2

sin sin 82 xx−
()

1

2

sin sin 82 xx+
()
Free download pdf