84 Chapter 3Transcendental functions
The graphs of all the logarithmic functions are similar, with properties
log 111 = 1 0, log 1 x 1 → 1 +∞ as x 1 → 1 ∞, log 1 x 1 → 1 −∞ as x → 0 (3.38)
We note that (real) log 1 xis not defined for negative values of x.
The combination properties of logarithms are the properties of the indices
(exponents) of the corresponding exponentials; for the natural logarithm:
ln 1 x 1 + 1 ln 1 y 1 = 1 ln 1 xy (3.39)
(3.40)
ln 1 x
n1 = 1 n 1 ln 1 x (3.41)
EXAMPLE 3.24Addition of logarithms. To prove equation (3.39),
let x 1 = 1 e
aand y 1 = 1 e
b,so thatxy 1 = 1 e
a+bThen, by definition (3.36)
ln 1 x 1 = 1 a,ln 1 y 1 = 1 b,ln 1 xy 1 = 1 a 1 + 1 b
Therefore ln 1 x 1 + 1 ln 1 y 1 = 1 ln 1 xy.
EXAMPLE 3.25Combinations of logarithms.
0 Exercises 38
EXAMPLE 3.26Simplify the expression ln 1 (1 1 − 1 x
2) 1 + 1 ln 1 (1 1 + 1 x)
− 11 − 1 ln 1 (1 1 − 1 x).
From the rule ln 1 x
n1 = 1 n 1 ln 1 x, it follows that ln 1 (1 1 + 1 x)
− 11 = 1 −ln 1 (1 1 + 1 x). Then
ln ln ln( ) ln ln+= ×= =l 24 24 8nn( ) ln ln ln 30
ln ln ln ln
235 2 3 5
63
6
3
2
×× = + +
−= = ln ln ln ln ln
l
232222
3==++
nn ln ln
1
2
22
1==−
−lln ln ln ln ln
ln ln( ) ln
1
2
1202 2
1
3
27 27 3
13=− =− =−
== ln ln−= =ln
−25 5
1
25
2ln ln lnxy
x
y
−=