Structural Engineering

(nextflipdebug5) #1

Draft


13.1Arches 215


Solvingthosefourequationssimultaneouslywe have:


2


6
6
6
4

140 26 : 25 0 0


0 1 0 1


1 0 1 0


80 60 0 0


3


7
7
7
5

8


>
>
>
<

>
>
>
:

RAy


RAx


RCy


RCx


9


>
>
>
=

>
>
>
;

=


8


>
>
>
<

>
>
>
:

2 ; 900


80


50


3 ; 000


9


>
>
>
=

>
>
>
;

)


8


>
>
>
<

>
>
>
:

RAy


RAx


RCy


RCx


9


>
>
>
=

>
>
>
;

=


8


>
>
>
<

>
>
>
:

15 : 1 k


29 : 8 k


34 : 9 k


50 : 2 k


9


>
>
>
=

>
>
>
;

(13.4)


We cancheck ourresultsby consideringthesummationwithrespectto b fromtheright:


(+






) M

B
z

= 0;(20)(20)(50:2)(33:75)+ (34:9)(60)= 0


p
(13.5)

Example13-2: Semi-CircularArch, (Gerstle1974)


Determinethereactionsof thethreehingedstaticallydeterminedsemi-circulararch under


itsowndeadweightw(per unitarclengths, whereds=rd).13.6


R cosq

R

A

B

C

R

A

B

q

dP=wRdq

q

q r

Figure13.6: Semi-Circularthreehingedarch


Solution:


I Reactions Thereactionscanbe determinedbyintegratingtheloadover theentirestruc-


ture



  1. VerticalReaction is determined rst:


(+



) MA = 0;(Cy)(2R) +

Z
=

=0


wRd
|{z}

dP


R(1 + cos)
| {z }

moment arm


= 0 (13.6-a)


)Cy =


wR


2


Z
=

=0


(1 + cos)d=


wR


2


[sin]j


=
=0

=


wR


2


[(sin)(0sin0)]


=





2


wR (13.6-b)



  1. HorizontalReactions aredeterminednext


(+






) MB = 0;(Cx)(R) + (Cy)(R)

Z
=


2

=0


wRd
|{z}

dP


Rcos
| {z }

moment arm


= 0 (13.7-a)

Free download pdf