126 II Divisibility
We have developed the arithmetic of quaternions only as far as is needed to prove
the four-squares theorem. A fuller account was given in the original (1896) paper
of Hurwitz [19]. For more information about sums of squares, see Grosswald [14]
and also Chapter XIII. For Waring’s problem, see Waring [45], Ellison [10] and
Vaughan [44].
8 SelectedReferences
[1] W.R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael
numbers,Ann. Math. 139 (1994), 703–722.
[2] S.A. Amitsur, Finite subgroups of division rings,Trans. Amer. Math. Soc. 80 (1955),
361–386.
[3] D.A. Clark, A quadratic field which is Euclidean but not norm-Euclidean,Manuscripta
Math. 83 (1994), 327–330.
[4] H. Davenport,The higher arithmetic, 7th ed., Cambridge University Press, 1999.
[5] L.E. Dickson,History of the theory of numbers, 3 vols., Carnegie Institute, Washington,
D.C., 1919–1923. [Reprinted, Chelsea, New York, 1992.]
[6] P.G.L. Dirichlet,Lectures on number theory,with supplements by R. Dedekind, English
transl. by J. Stillwell, American Mathematical Society, Providence, R.I., 1999. [German
original, 1894.]
[7] J.D. Dixon, Factorization and primality tests,Amer. Math. Monthly 91 (1984), 333–352.
[8] D.W. Dubois and A. Steger, A note on division algorithms in imaginary quadratic fields,
Canad. J. Math. 10 (1958), 285–286.
[9] R.B. Eggleton, C.B. Lacampagne and J.L. Selfridge, Euclidean quadratic fields,Amer.
Math. Monthly 99 (1992), 829–837.
[10] W.J. Ellison, Waring’s problem,Amer. Math. Monthly 78 (1971), 10–36.
[11] Euclid,The thirteen books of Euclid’s elements, English translation by T.L. Heath, 2nd
ed., reprinted in 3 vols., Dover, New York, 1956.
[12] S. Gao, Absolute irreducibility of polynomialsvia Newton polytopes,J. Algebra 237
(2001), 501–520.
[13] C.F. Gauss,Disquisitiones arithmeticae, English translation by A.A. Clarke, revised by
W.C. Waterhouse, Springer, New York, 1986. [Latin original, 1801.]
[14] E. Grosswald,Representations of integers as sums of squares, Springer-Verlag, New York,
1985.
[15] G.H. Hardy and E.M. Wright,An introduction to the theory of numbers, 6th ed., Oxford
University Press, 2008.
[16] D.R. Heath-Brown, Artin’s conjecture for primitive roots,Quart. J. Math. Oxford Ser.(2)
37 (1986), 27–38.
[17] A.P. Hillman and V.E. Hoggatt, Exponents of primes in generalized binomial coefficients,
J. Reine Angew. Math.262/3(1973), 375–380.
[18] L.K. Hua,Introduction to number theory, English translation by P. Shiu, Springer-Verlag,
Berlin, 1982.
[19] A. Hurwitz,Uber die Zahlentheorie der Quaternionen, ̈ Mathematische Werke, Band II,
pp. 303–330, Birkh ̈auser, Basel, 1933.
[20] N. Iiyori and H. Yamaki, On a conjecture of Frobenius,Bull. Amer. Math. Soc. (N.S) 25
(1991), 413–416.
[21] N. Jacobson,Basic Algebra I, 2nd ed., W.H. Freeman, New York, 1985.
[22] J.-R. Joly,Equations et vari ́ ́ et ́es alg ́ebriques sur un corps fini,Enseign. Math.(2) 19
(1973), 1–117.