Number Theory: An Introduction to Mathematics

(ff) #1
Additional References 127

[23] S. Lang,Algebra, corrected reprint of 3rd ed., Addison-Wesley, Reading, Mass., 1994.
[24] D.H. Lehmer,Guide to tables in the theory of numbers, National Academy of Sciences,
Washington, D.C., reprinted 1961.
[25] D.N. Lehmer,List of prime numbers from 1 to10,006,721, reprinted, Hafner, New York,
1956.
[26] D.N. Lehmer,Factor table for the first ten millions, reprinted, Hafner, New York, 1956.
[27] A.K. Lenstra, Primality testing,Proc. Symp. Appl. Math. 42 (1990), 13–25.
[28] W.J. LeVeque,Fundamentals of number theory, reprinted Dover, Mineola, N.Y., 1996.
[29] U. Libbrecht,Chinese mathematics in the thirteenth century, MIT Press, Cambridge,
Mass., 1973.
[30] R. Lidl and H. Niederreiter,Finite fields, 2nd ed., Cambridge University Press, 1997.
[31] H.B. Mann,Introduction to algebraic number theory, Ohio State University, Columbus,
Ohio, 1955.
[32] R. Narasimhan,Complex analysis in one variable,Birkh ̈auser, Boston, Mass., 1985.
[33] W. Narkiewicz,Number theory, English translation by S. Kanemitsu, World Scientific,
Singapore, 1983.
[34] I. Niven, H.S. Zuckerman and H.L. Montgomery,An introduction to the theory of
numbers, 5th ed., Wiley, New York, 1991.
[35] H. Pr ̈ufer, Untersuchungen ̈uber Teilbarkeitseigenschaften,J. Reine Angew. Math. 168
(1932), 1–36.
[36] T.-S. Rhai, A characterization of polynomial domains over a field,Amer. Math. Monthly
69 (1962), 984–986.
[37] R.L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems,Comm. ACM 21 (1978), 120–126.
[38] P. Salmon, Sulla fattorialita delle algebre graduate e degli anelli locali,Rend. Sem. Mat. Univ. Padova 41 (1968), 119–138. [39] P. Samuel, Unique factorization,Amer. Math. Monthly 75 (1968), 945–952. [40] P. Samuel, About Euclidean rings,J. Algebra 19 (1971), 282–301. [41] A. Scholz,Einf ̈uhrung in die Zahlentheorie, revised and edited by B. Schoeneberg, 5th ed., de Gruyter, Berlin, 1973. [42] H.J.S. Smith, Report on the theory of numbers,Collected mathematical papers, Vol.1, pp. 38–364, reprinted, Chelsea, New York, 1965. [Original, 1859–1865.] [43] T.J. Stieltjes, Sur la th ́eorie des nombres,Ann. Fac. Sci. Toulouse 4 (1890), 1–103. [Reprinted in Tome 2,pp. 265–377 of T.J. Stieltjes,Oeuvres completes,2vols.,
Noordhoff, Groningen, 1914–1918.]
[44] R.C. Vaughan,The Hardy–Littlewood method, 2nd ed., Cambridge Tracts in Mathematics
125 , Cambridge University Press, 1997.
[45] E. Waring,Meditationes algebraicae, English transl. of 1782 edition by D. Weeks, Amer.
Math. Soc., Providence, R.I., 1991.
[46] A. Weil,Number theory:an approach through history,Birkh ̈auser, Boston, Mass., 1984.
[47] A.E. Western and J.C.P. Miller,Tables of indices and primitive roots, Royal Soc. Math.
Tables, Vol. 9, Cambridge University Press, London, 1968.
[48] H.C. Williams, Primality testing on a computer,Ars Combin. 5 (1978), 127–185.


AdditionalReferences


M. Agarwal, N. Kayal and N. Saxena, PRIMES is in P,Ann. of Math. 160 (2004), 781–793.
[An unconditional deterministic polynomial-time algorithm for determining if an integer>1is
prime or composite.]
A. Granville, It is easy to determine whether a given integer is prime,Bull. Amer. Math. Soc.
(N.S.) 42 (2005), 3–38.

Free download pdf