Number Theory: An Introduction to Mathematics

(ff) #1

396 IX The Number of Prime Numbers


[4] R. Ayoub,An introduction to the analytic theory of numbers, Math. Surveys no. 10, Amer.
Math. Soc., Providence, 1963.
[5] E. Bach, Explicit boundsfor primality testing and related problems,Math. Comp. 55
(1990), 353–380.
[6] P.T. Bateman and R.A. Horn, A heuristic asymptotic formula concerning the distribution
of prime numbers,Math. Comp. 16 (1962), 363–367.
[7] H. Bauer,Probability theory, English transl. by R.B. Burckel, de Gruyter, Berlin, 1996.
[8] C. Bays and R.H. Hudson, A new bound for the smallestxwithπ(x)>li(x),Math.
Comp. 69 (1999), 1285–1296.
[9] E. Bombieri, Counting points on curves over finite fields (d’apres S.A. Stepanov), S ́eminaire Bourbaki vol. 1972/3, Expos ́es 418–435, pp. 234–241, Lecture Notes in Mathematics 383 (1974), Springer-Verlag, Berlin. [10] R.P. Brent, Irregularities in the distribution of primes and twin primes,Math. Comp. 29 (1975), 43–56. [11] C. Chevalley,Introduction to the theory of algebraic functions of one variable,Math. Surveys no. 6, Amer. Math. Soc., New York, 1951. [12] J.Ci ̆ ̆zek , On the proof of the prime number theorem,Casopis P ̆ ̆ est. Mat. 106 (1981), 395–401. [13] W.A. Coppel, J.B. Fourier–On the occasion of his two hundredth birthday,Amer. Math. Monthly 76 (1969), 468–483. [14] A. Cossidente, J.W.P. Hirschfeld, G. Korchm ́aros and F. Torres, On plane maximal curves, Compositio Math. 121 (2000), 163–181. [15] H. Daboussi, Sur le th ́eoreme des nombres premiers,C.R. Acad. Sci. Paris S ́er. I 298
(1984), 161–164.
[16] M. Deuring,Lectures on the theory of algebraic functions of one variable, Lecture Notes
in Mathematics 314 (1973), Springer-Verlag, Berlin.
[17] H.G. Diamond, Changes of sign ofπ(x)−li(x),Enseign. Math. 21 (1975), 1–14.
[18] H.G. Diamond, Elementary methods in the study of the distribution of prime numbers,
Bull. Amer. Math. Soc.(N.S.) 7 (1982), 553–589.
[19] A.L. Dur ́an, R. Estrada and R.P. Kanwal, Extensions of the Poisson summation formula,
J. Math. Anal. Appl. 218 (1998), 581–606.
[20] H.M. Edwards,Riemann’s zeta function, Academic Press, New York, 1974.
[21] W. Ellison and F. Ellison,Prime numbers, Wiley, New York, 1985.
[22]Encyclopedic dictionary of mathematics(ed. K. Ito), 2nd ed., Mathematical Society of
Japan, MIT Press, Cambridge, Mass., 1987.
[23] L.J. Goldstein, Density questions in algebraic number theory,Amer. Math. Monthly 78
(1971), 342–351.
[24] D.A. Goldston, On the pair correlation conjecture for zeros of the Riemann zeta-function,
J. Reine Angew. Math. 385 (1988), 24–40.
[25] I.J. Good and R.F. Churchhouse, The Riemann hypothesis and pseudorandom features of
the M ̈obius sequence,Math. Comp. 22 (1968), 857–861.
[26] V.D. Goppa, Codes on algebraic curves,Soviet Math. Dokl. 24 (1981), 170–172.
[27] J. Hadamard,Selecta, Gauthier-Villars, Paris, 1935.
[28] G.H. Hardy and J.E. Littlewood, Some problems of partitio numerorum III, On the
expression of a number as a sum of primes,Acta Math. 44 (1923), 1–70.
[29] M. Kac,Statistical independence in probability,analysis and number theory,Carus
Mathematical Monograph 12 , Math. Assoc. of America, 1959.
[30] A.A. Karatsuba and S.M. Voronin, The Riemann zeta-function, English transl. by
N. Koblitz, de Gruyter, Berlin, 1992.
[31] A. Katok and B. Hasselblatt,Introduction to the modern theory of dynamical systems,
Cambridge University Press, Cambridge, 1995.

Free download pdf