9 Selected References 397
[32] N. Katz, An overview of Deligne’s proof of the Riemann hypothesis for varieties over
finite fields,Mathematical developments arising from Hilbert problems, Proc. Sympos.
Pure Math. 28 , pp. 275–305, Amer. Math. Soc., Providence, 1976.
[33] E. Landau,Handbuch der Lehre von der Verteilung der Primzahlen(2 vols.), 2nd ed.,
Chelsea, New York, 1953.
[34] R. Lasser,Introduction to Fourier series, M. Dekker, New York, 1996.
[35] R.S. Lehman, On the differenceπ(x)−li(x),Acta Arith. 11 (1966), 397–410.
[36] M. Lo`eve,Probability theory, 4th ed. in 2 vols., Springer-Verlag, New York, 1978.
[37] J. van de Luneet al., On the zeros of the Riemann zeta function in the critical strip IV,
Math. Comp. 46 (1986), 667–681.
[38] L. Mattner, Bernstein’s theorem, inversion formula of Post and Widder, and the uniqueness
theorem for Laplace transforms,Exposition. Math. 11 (1993), 137–140.
[39] M.L. Mehta,Random matrices, 2nd ed., Academic Press, New York, 1991.
[40] H.L. Montgomery, The pair correlation of zeros of the zeta function,Proc. Sympos. Pure
Math. 24 , pp. 181–193, Amer. Math. Soc., Providence, 1973.
[41] M. R. Murty, Artin’s conjecture for primitive roots,Math. Intelligencer 10 (1988), no. 4,
59–67.
[42] V.K. Murty, Ramanujan and Harish-Chandra,Math. Intelligencer 15 (1993), no.2, 33–39.
[43] W. Narkiewicz,Number theory, World Scientific, Singapore, 1983.
[44] W. Narkiewicz,Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-
Verlag, Berlin, 1990.
[45] A.M. Odlyzko, On the distribution of spacings between zeros of the zeta function,Math.
Comp. 48 (1987), 273–308.
[46] W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of
Axiom A flows,Ann. of Math. 118 (1983), 573–591.
[47] S.J. Patterson,An introduction to the theory of the Riemann zeta-function, Cambridge
University Press, Cambridge, 1988.
[48] J. Pintz, On Legendre’s prime number formula,Amer. Math. Monthly 87 (1980), 733–735.
[49] R. Remmert,Classical topics in complex function theory, English transl. by L. Kay,
Springer-Verlag, New York, 1998.
[50] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime
numbers,Illinois J. Math. 6 (1962), 64–94.
[51] M. Rubinstein, A simple heuristic proof of Hardy andLittlewood’s conjecture B,Amer.
Math. Monthly 100 (1993), 456–460.
[52] W. Rudin,Functional analysis, McGraw-Hill, New York, 1973.
[53] R. Rumely, Numerical computations concerning the ERH,Math. Comp. 61 (1993),
415–440.
[54] H.M. Stark, The analytic theory of algebraic numbers,Bull. Amer. Math. Soc. 81 (1975),
961–972.
[55] H. Stichtenoth,Algebraic function fields and codes, Springer-Verlag, Berlin, 1993.
[56] P.L. Tchebychef,Oeuvres(2 vols.), reprinted Chelsea, New York, 1962.
[57] E.C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed. revised by
D.R. Heath-Brown, Clarendon Press, Oxford, 1986.
[58] C.A. Tracy and H. Widom, Introduction to random matrices,Geometric and quantum
aspects of integrable systems(ed. G.F. Helminck), pp. 103–130, Lecture Notes in Physics
424 , Springer-Verlag, Berlin, 1993.
[59] M.A. Tsfasman and S.G. Vladut,Algebraic-geometric codes, Kluwer, Dordrecht, 1991.
[60] M.A. Tsfasman, S.G. Vladut and Th. Zink, Modular curves, Shimura curves, and Goppa
codes,Math. Nachr. 109 (1982), 21–28.
[61] A. Weil, Number of solutions of equations in finite fields,Bull. Amer. Math. Soc. 55
(1949), 497–508.