Number Theory: An Introduction to Mathematics

(ff) #1

504 XII Elliptic Functions


then


tdt/dθ=(a^2 −b^2 )sinθcosθ=[(a^2 −t^2 )(t^2 −b^2 )]^1 /^2

and


J=


∫π/ 2

0

φ((a^2 sin^2 θ+b^2 cos^2 θ)^1 /^2 )dθ/(a^2 sin^2 θ+b^2 cos^2 θ)^1 /^2.

Now put

t 1 =( 1 / 2 )(t+ab/t)

and, as before,


a 1 =(a+b)/ 2 , b 1 =(ab)^1 /^2.

Then


a 12 −t 12 =(a^2 −t^2 )(t^2 −b^2 )/ 4 t^2 ,
t 12 −b^21 =(t^2 −ab)^2 / 4 t^2 ,
dt 1 /dt=(t^2 −ab)/ 2 t^2.

Astincreases frombtob 1 ,t 1 decreases froma 1 tob 1 ,andastfurther increases from
b 1 toa,t 1 increases fromb 1 back toa 1 .Since


t=t 1 ±(t 12 −b^21 )^1 /^2 ,

it follows from these observations that
∫a


b

φ(t)[(a^2 −t^2 )(t^2 −b^2 )]−^1 /^2 dt=

∫a 1

b 1

ψ(t 1 )[(a 12 −t^21 )(t 12 −b 12 )]−^1 /^2 dt 1 ,

where


ψ(t 1 )=( 1 / 2 ){φ[(t 1 +(t 12 −b^21 )^1 /^2 ]+φ[(t 1 −(t 12 −b 12 )^1 /^2 ]}.

In particular, if we takeφ(t)=1 and put

K(a,b):=

∫a

b

[(a^2 −t^2 )(t^2 −b^2 )]−^1 /^2 dt,

we obtain


K(a,b)=K(a 1 ,b 1 ).

Hence, by repeating the process,K(a,b)=K(an,bn).But


K(an,bn)=

∫π/ 2

0

(a^2 nsin^2 θ+bn^2 cos^2 θ)−^1 /^2 dθ
Free download pdf