Number Theory: An Introduction to Mathematics

(ff) #1
2 The Arithmetic-Geometric Mean 505

and


bn≤(an^2 sin^2 θ+b^2 ncos^2 θ)^1 /^2 ≤an.

Consequently, by lettingn→∞we obtain


K(a,b)=π/ 2 M(a,b). (1)

Now takeφ(t)=a^2 −t^2 and put

E(a,b):=

∫a

b

[(a^2 −t^2 )/(t^2 −b^2 )]^1 /^2 dt.

In this case


ψ(t 1 )=(a^2 −b^2 )/ 2 + 2 (a 12 −t 12 )

and hence


E(a,b)=(a^2 −b^2 )K(a,b)/ 2 + 2 E(a 1 ,b 1 ).

If we write


en= 2 n(a^2 n−b^2 n)

then, sinceK(a,b)=K(an,bn), by repeating the process we obtain


E(a,b)/K(a,b)=(e 0 +e 1 +···+en− 1 )/ 2 + 2 nE(an,bn)/K(an,bn).

But


2 nE(an,bn)=en

∫π/ 2

0

cos^2 θ(a^2 nsin^2 θ+bn^2 cos^2 θ)−^1 /^2 dθ

anden→0 (rapidly) asn→∞,since


en= 2 n(an− 1 −bn− 1 )^2 / 4 =en− 1 (an− 1 −bn− 1 )/ 4 an.

Hence


E(a,b)/K(a,b)=(e 0 +e 1 +e 2 +···)/ 2. (2)

To avoid taking differences of nearly equal quantities, the constantsenmay be calcu-
lated by means of the recurrence relations


en=e^2 n− 1 / 2 n+^2 a^2 n(n= 1 , 2 ,...).

Next take

φ(t)=p[(p^2 −a^2 )(p^2 −b^2 )]^1 /^2 /(p^2 −t^2 ),

where eitherp>aor 0<p<b, and put


P(a,b,p):=

∫a

b

p[(p^2 −a^2 )(p^2 −b^2 )]^1 /^2 dt/(p^2 −t^2 )[(a^2 −t^2 )(t^2 −b^2 )]^1 /^2.
Free download pdf