154 GEOMETRY AND TRIGONOMETRYAmplitude
Amplitude is the name given to the maximum or
peak value of a sine wave. Each of the graphs
shown in Figs. 15.12 to 15.15 has an amplitude of
+1 (i.e. they oscillate between+1 and−1). How-
ever, ify=4 sinA, each of the values in the table
is multiplied by 4 and the maximum value, and
thus amplitude, is 4. Similarly, ify=5 cos 2A, the
amplitude is 5 and the period is 360◦/2, i.e. 180◦.
Problem 5. Sketchy=sin 3AbetweenA= 0 ◦
andA= 360 ◦.Amplitude=1; period= 360 ◦/ 3 = 120 ◦.
A sketch ofy=sin 3Ais shown in Fig. 15.16.
Figure 15.16Problem 6. Sketchy=3 sin 2AfromA=0to
A= 2 πradians.Amplitude=3, period= 2 π/ 2 =πrads (or 180◦).
A sketch ofy=3 sin 2Ais shown in Fig. 15.17.
Figure 15.17Problem 7. Sketchy=4 cos 2xfromx= 0 ◦to
x= 360 ◦.Amplitude=4; period= 360 ◦/ 2 = 180 ◦.A sketch ofy=4 cos 2xis shown in Fig. 15.18.Figure 15.18Problem 8. Sketchy=2 sin3
5Aover one
cycle.Amplitude=2; period=360 ◦
3
5=360 ◦× 5
3= 600 ◦.A sketch ofy=2 sin3
5Ais shown in Fig. 15.19.Figure 15.19Lagging and leading angles(i) A sine or cosine curve may not always start
at 0◦. To show this a periodic function is rep-
resented byy=sin(A±α)ory=cos(A±α)