THE RELATIONSHIP BETWEEN TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 175
B
cosθ−cosφ=−2 sin
(
θ+φ
2
)
sin
(
θ−φ
2
)
(see Chapter 18, page 184)
thus cosjA−cosjB
=−2 sinj
(
A+B
2
)
sinj
(
A−B
2
)
But from equation (5), cosjA=coshA
and from equation (6), sinjA=jsinhA
Hence, coshA−coshB
=− 2 jsinh
(
A+B
2
)
jsinh
(
A−B
2
)
=− 2 j^2 sinh
(
A+B
2
)
sinh
(
A−B
2
)
Butj^2 =−1, hence
coshA−coshB=2 sinh
(
A+B
2
)
sinh
(
A−B
2
)
Problem 5. Develop the hyperbolic identity
corresponding to sin 3θ=3 sinθ−4 sin^3 θby
writingjAforθ.
SubstitutingjAforθgives:
sin 3jA=3 sinjA−4 sin^3 jA
and since from equation (6),
sinjA=jsinhA,
jsinh 3A= 3 jsinhA− 4 j^3 sinh^3 A
Dividing throughout byjgives:
sinh 3A=3 sinhA−j^2 4 sinh^3 A
But j^2 =−1, hence
sinh 3A=3 sinhA+4 sinh^3 A
[An examination of Problems 3 to 5 shows that
whenever the trigonometric identity contains a term
which is the product of two sines, or the implied
product of two sine (e.g. tan^2 θ=sin^2 θ/cos^2 θ, thus
tan^2 θis the implied product of two sines), the sign
of the corresponding term in the hyperbolic function
changes. This relationship between trigonometric
and hyperbolic functions is known as Osborne’s rule,
as discussed in Chapter 5, page 44].
Now try the following exercise.
Exercise 79 Further problems on hyper-
bolic identities
In Problems 1 to 9, use the substitutionA=jθ
(andB=jφ) to obtain the hyperbolic identities
corresponding to the trigonometric identities
given.
- 1+tan^2 A=sec^2 A
[1−tanh^2 θ=sech^2 θ] - cos (A+[B)=cosAcosB−sinAsinB
cosh (θ+φ)
=coshθcoshφ+sinhθsinhφ
]
- sin (A−B)=[sinAcosB−cosAsinB
sinh (θ+φ)=sinhθcoshφ
−coshθsinhφ
]
- tan 2A=
2 tanA
1 −tan^2 A[
tanh 2θ=
2 tanhθ
1 +tanh^2 θ
]
- cosAsinB=
1
2
[ sin (A+B)−sin (A−B)]
⎡
⎣coshθcoshφ=
1
2
[sinh(θ+φ)
−sinh(θ−φ)]
⎤
⎦
- sin^3 A=
3
4
sinA−
1
4
sin 3A
[
sinh^3 θ=
1
4
sinh 3θ−
3
4
sinhθ
]
- cot^2 A(sec^2 A−1)= 1
[coth^2 θ(1−sech^2 θ)=1]