COMPOUND ANGLES 177B
Hence tan(
x+π
4)
tan(
x−π
4)=(
1 +tanx
1 −tanx)(
tanx− 1
1 +tanx)=tanx− 1
1 −tanx=−(1−tanx)
1 −tanx=− 1Problem 4. If sinP= 0 .8142 and cosQ=
0 .4432 evaluate, correct to 3 decimal places:
(a) sin(P−Q), (b) cos(P+Q) and
(c) tan(P+Q), using the compound-angle
formulae.Since sinP= 0 .8142 then
P=sin−^10. 8142 = 54. 51 ◦.
Thus cosP=cos 54. 51 ◦= 0 .5806 and
tanP=tan 54. 51 ◦= 1 .4025.
Since cosQ= 0 .4432,Q=cos−^10. 4432 = 63. 69 ◦.
Thus sinQ=sin 63. 69 ◦= 0 .8964 and
tanQ=tan 63. 69 ◦= 2 .0225.
(a) sin (P−Q)
=sinPcosQ−cosPsinQ
=(0.8142)(0.4432)−(0.5806)(0.8964)
= 0. 3609 − 0. 5204 =− 0. 160(b) cos (P+Q)
=cosPcosQ−sinPsinQ
=(0.5806)(0.4432)−(0.8142)(0.8964)
= 0. 2573 − 0. 7298 =− 0. 473
(c) tan (P+Q)=tanP+tanQ
1 −tanPtanQ=(1.4025)+(2.0225)
1 −(1.4025)(2.0225)=3. 4250
− 1. 8366=− 1. 865Problem 5. Solve the equation4 sin(x− 20 ◦)=5 cosxfor values ofxbetween 0◦and 90◦.4 sin(x− 20 ◦)=4[sinxcos 20◦−cosxsin 20◦],
from the formula for sin(A−B)
=4[sinx(0.9397)−cosx(0.3420)]
= 3 .7588 sinx− 1 .3680 cosxSince 4 sin (x− 20 ◦)=5 cosxthen
3 .7588 sinx− 1 .3680 cosx=5 cosx
Rearranging gives:3 .7588 sinx=5 cosx+ 1 .3680 cosx
= 6 .3680 cosxandsinx
cosx=6. 3680
3. 7588= 1. 6942i.e. tanx= 1 .6942, andx=tan−^11. 6942 = 59. 449 ◦
or 59 ◦ 27 ′[Check: LHS=4 sin (59. 449 ◦− 20 ◦)=4 sin 39. 449 ◦= 2. 542
RHS=5 cosx=5 cos 59. 449 ◦= 2 .542]Now try the following exercise.Exercise 80 Further problems on com-
pound angle formulae- Reduce the following to the sine of one
angle:
(a) sin 37◦cos 21◦+cos 37◦sin 21◦
(b) sin 7tcos 3t−cos 7tsin 3t
[(a) sin 58◦ (b) sin 4t]- Reduce the following to the cosine of one
angle:
(a) cos 71◦cos 33◦−sin 71◦sin 33◦
(b) cosπ
3cosπ
4+sinπ
3sinπ
4
[(a) cos 104◦≡−cos 76◦(b) cosπ
12]- Show that:
(a) sin
(
x+π
3)
+sin(
x+2 π
3)
=√
3 cosxand(b)−sin(
3 π
2−φ)
=cosφ- Prove that:
(a) sin
(
θ+π
4)
−sin(
θ−3 π
4)=√
2( sinθ+cosθ)(b)cos (270◦+θ)
cos (360◦−θ)=tanθ