242 VECTOR GEOMETRYthe sine of the angle between them. The vector prod-
uct of vectorsoaandobis written asoa×oband is
defined by:|oa×ob|=oa obsinθwhereθis the angle between the two vectors.
The direction ofoa×obis perpendicular to bothoa
andob, as shown in Fig. 22.9.
o θaoa×ob bθabob×oa(a) (b)oFigure 22.9The direction is obtained by considering that a
right-handed screw is screwed alongoa×obwith
its head at the origin and if the direction ofoa×ob
is correct, the head should rotate fromoatoob,
as shown in Fig. 22.9(a). It follows that the direc-
tion ofob×oais as shown in Fig. 22.9(b). Thus
oa×obis not equal toob×oa. The magnitudes of
oa obsinθare the same but their directions are 180◦
displaced, i.e.
oa×ob=−ob×oaThe vector product of two vectors may be expressed
in terms of the unit vectors. Let two vectors,aand
b, be such that:
a=a 1 i+a 2 j+a 3 kandb=b 1 i+b 2 j+b 3 kThen,a×b=(a 1 i+a 2 j+a 3 k)×(b 1 i+b 2 j+b 3 k)=a 1 b 1 i×i+a 1 b 2 i×j+a 1 b 3 i×k+a 2 b 1 j×i+a 2 b 2 j×j+a 2 b 3 j×k+a 3 b 1 k×i+a 3 b 2 k×j+a 3 b 3 k×kBut by the definition of a vector product,i×j=k,j×k=iandk×i=jAlsoi×i=j×j=k×k=(1)(1) sin 0◦=0.Remembering thata×b=−b×agives:a×b=a 1 b 2 k−a 1 b 3 j−a 2 b 1 k+a 2 b 3 i+a 3 b 1 j−a 3 b 2 iGrouping thei,jandkterms together, gives:a×b=(a 2 b 3 −a 3 b 2 )i+(a 3 b 1 −a 1 b 3 )j+(a 1 b 2 −a 2 b 1 )kThe vector product can be written in determinant
form as:a×b=∣
∣
∣
∣
∣ijk
a 1 a 2 a 3
b 1 b 2 b 3∣
∣
∣
∣
∣(5)The 3×3 determinant∣
∣
∣
∣
∣ijk
a 1 a 2 a 3
b 1 b 2 b 3∣
∣
∣
∣
∣is evaluated as:i∣
∣
∣
∣a 2 a 3
b 2 b 3∣
∣
∣
∣−j∣
∣
∣
∣a 1 a 3
b 1 b 3∣
∣
∣
∣+k∣
∣
∣
∣a 1 a 2
b 1 b 2∣
∣
∣
∣where
∣
∣
∣
∣a 2 a 3
b 2 b 3∣
∣
∣
∣=a^2 b^3 −a^3 b^2 ,
∣
∣
∣
∣a 1 a 3
b 1 b 3∣
∣
∣
∣=a^1 b^3 −a^3 b^1 and
∣
∣
∣
∣a 1 a 2
b 1 b 2∣
∣
∣
∣=a^1 b^2 −a^2 b^1The magnitude of the vector product of two vectors
can be found by expressing it in scalar product form
and then using the relationshipa•b=a 1 b 1 +a 2 b 2 +a 3 b 3Squaring both sides of a vector product equation
gives:(|a×b|)^2 =a^2 b^2 sin^2 θ=a^2 b^2 (1−cos^2 θ)=a^2 b^2 −a^2 b^2 cos^2 θ (6)It is stated in Section 22.2 thata•b=abcosθ, hencea•a=a^2 cosθ.Butθ= 0 ◦, thusa•a=a^2