Higher Engineering Mathematics

(Greg DeLong) #1
SCALAR AND VECTOR PRODUCTS 243

D

Also, cosθ=

a•b
ab

.

Multiplying both sides of this equation bya^2 b^2 and
squaring gives:

a^2 b^2 cos^2 θ=

a^2 b^2 (a•b)^2
a^2 b^2

=(a•b)^2

Substituting in equation (6) above fora^2 =a•a,
b^2 =b•banda^2 b^2 cos^2 θ=(a•b)^2 gives:

(|a×b|)^2 =(a•a)(b•b)−(a•b)^2

That is,

|a×b|=


[(a•a)(b•b)−(a•b)^2 ] (7)

Problem 7. For the vectorsa=i+ 4 j− 2 kand
b= 2 i−j+ 3 kfind (i)a×band (ii)|a×b|.

(i) From equation (5),

a×b=






ijk
a 1 a 2 a 3
b 1 b 2 b 3






=i





a 2 a 3
b 2 b 3




∣−j





a 1 a 3
b 1 b 3




∣+k





a 1 a 2
b 1 b 2





Hence

a×b=






ijk
14 − 2
2 − 13






=i





4 − 2
− 13




∣−j





1 − 2
23





+k





14
2 − 1





=i(12−2)−j(3+4)+k(− 1 −8)

= 10 i− 7 j− 9 k

(ii) From equation (7)


|a×b|=


[(a•a)(b•b)−(a•b)^2 ]

Now a•a=(1)(1)+(4×4)+(−2)(−2)

= 21

b•b=(2)(2)+(−1)(−1)+(3)(3)
= 14
and a•b=(1)(2)+(4)(−1)+(−2)(3)
=− 8

Thus |a×b|=


(21× 14 −64)

=


230 =15.17

Problem 8. Ifp= 4 i+j− 2 k,q= 3 i− 2 j+k
andr=i− 2 kfind (a) (p− 2 q)×r
(b)p×(2r× 3 q).

(a) (p− 2 q)×r=[4i+j− 2 k

−2(3i− 2 j+k)]×(i− 2 k)

=(− 2 i+ 5 j− 4 k)×(i− 2 k)

=

∣ ∣ ∣ ∣ ∣ ∣
ij k
− 25 − 4
10 − 2

∣ ∣ ∣ ∣ ∣ ∣

from equation (5)

=i





5 − 4
0 − 2




∣−j





− 2 − 4
1 − 2





+k





− 25
10





=i(− 10 −0)−j(4+4)
+k(0−5), i.e.
(p− 2 q)×r=− 10 i− 8 j− 5 k

(b) (2r× 3 q)=(2i− 4 k)×(9i− 6 j+ 3 k)

=

∣ ∣ ∣ ∣ ∣ ∣
ijk
20 − 4
9 − 63

∣ ∣ ∣ ∣ ∣ ∣

=i(0−24)−j(6+36)
+k(− 12 −0)
=− 24 i− 42 j− 12 k

Hence

p×(2r× 3 q)=(4i+j− 2 k)
×(− 24 i− 42 j− 12 k)

=

∣ ∣ ∣ ∣ ∣ ∣
ijk
41 − 2
− 24 − 42 − 12

∣ ∣ ∣ ∣ ∣ ∣
Free download pdf