SCALAR AND VECTOR PRODUCTS 243
D
Also, cosθ=
a•b
ab
.
Multiplying both sides of this equation bya^2 b^2 and
squaring gives:
a^2 b^2 cos^2 θ=
a^2 b^2 (a•b)^2
a^2 b^2
=(a•b)^2
Substituting in equation (6) above fora^2 =a•a,
b^2 =b•banda^2 b^2 cos^2 θ=(a•b)^2 gives:
(|a×b|)^2 =(a•a)(b•b)−(a•b)^2
That is,
|a×b|=
√
[(a•a)(b•b)−(a•b)^2 ] (7)
Problem 7. For the vectorsa=i+ 4 j− 2 kand
b= 2 i−j+ 3 kfind (i)a×band (ii)|a×b|.
(i) From equation (5),
a×b=
∣
∣
∣
∣
∣
ijk
a 1 a 2 a 3
b 1 b 2 b 3
∣
∣
∣
∣
∣
=i
∣
∣
∣
∣
a 2 a 3
b 2 b 3
∣
∣
∣
∣−j
∣
∣
∣
∣
a 1 a 3
b 1 b 3
∣
∣
∣
∣+k
∣
∣
∣
∣
a 1 a 2
b 1 b 2
∣
∣
∣
∣
Hence
a×b=
∣
∣
∣
∣
∣
ijk
14 − 2
2 − 13
∣
∣
∣
∣
∣
=i
∣
∣
∣
∣
4 − 2
− 13
∣
∣
∣
∣−j
∣
∣
∣
∣
1 − 2
23
∣
∣
∣
∣
+k
∣
∣
∣
∣
14
2 − 1
∣
∣
∣
∣
=i(12−2)−j(3+4)+k(− 1 −8)
= 10 i− 7 j− 9 k
(ii) From equation (7)
|a×b|=
√
[(a•a)(b•b)−(a•b)^2 ]
Now a•a=(1)(1)+(4×4)+(−2)(−2)
= 21
b•b=(2)(2)+(−1)(−1)+(3)(3)
= 14
and a•b=(1)(2)+(4)(−1)+(−2)(3)
=− 8
Thus |a×b|=
√
(21× 14 −64)
=
√
230 =15.17
Problem 8. Ifp= 4 i+j− 2 k,q= 3 i− 2 j+k
andr=i− 2 kfind (a) (p− 2 q)×r
(b)p×(2r× 3 q).
(a) (p− 2 q)×r=[4i+j− 2 k
−2(3i− 2 j+k)]×(i− 2 k)
=(− 2 i+ 5 j− 4 k)×(i− 2 k)
=
∣ ∣ ∣ ∣ ∣ ∣
ij k
− 25 − 4
10 − 2
∣ ∣ ∣ ∣ ∣ ∣
from equation (5)
=i
∣
∣
∣
∣
5 − 4
0 − 2
∣
∣
∣
∣−j
∣
∣
∣
∣
− 2 − 4
1 − 2
∣
∣
∣
∣
+k
∣
∣
∣
∣
− 25
10
∣
∣
∣
∣
=i(− 10 −0)−j(4+4)
+k(0−5), i.e.
(p− 2 q)×r=− 10 i− 8 j− 5 k
(b) (2r× 3 q)=(2i− 4 k)×(9i− 6 j+ 3 k)
=
∣ ∣ ∣ ∣ ∣ ∣
ijk
20 − 4
9 − 63
∣ ∣ ∣ ∣ ∣ ∣
=i(0−24)−j(6+36)
+k(− 12 −0)
=− 24 i− 42 j− 12 k
Hence
p×(2r× 3 q)=(4i+j− 2 k)
×(− 24 i− 42 j− 12 k)
=
∣ ∣ ∣ ∣ ∣ ∣
ijk
41 − 2
− 24 − 42 − 12
∣ ∣ ∣ ∣ ∣ ∣