244 VECTOR GEOMETRY=i(− 12 −84)−j(− 48 −48)+k(− 168 +24)=− 96 i+ 96 j− 144 kor− 48 ( 2 i− 2 j+ 3 k)Practical applications of vector productsProblem 9. Find the moment and the magni-
tude of the moment of a force of (i+ 2 j− 3 k)
newtons about point B having co-ordinates
(0, 1, 1), when the force acts on a line throughA
whose co-ordinates are (1, 3, 4).The momentMabout pointBof a force vectorF
which has a position vector ofrfromAis given by:
M=r×Fris the vector fromBtoA, i.e.r=BA.
ButBA=BO+OA=OA−OB (see Problem 8,
Chapter 21), that is:r=(i+ 3 j+ 4 k)−(j+k)
=i+ 2 j+ 3 kMoment,M=r×F=(i+ 2 j+ 3 k)×(i+ 2 j− 3 k)=∣ ∣ ∣ ∣ ∣ ∣
ij k
12 3
12 − 3∣ ∣ ∣ ∣ ∣ ∣=i(− 6 −6)−j(− 3 −3)+k(2−2)
=− 12 i+ 6 jNmThe magnitude ofM,
|M|=|r×F|=√
[(r•r)(F•F)−(r•F)^2 ]r•r=(1)(1)+(2)(2)+(3)(3)= 14F•F=(1)(1)+(2)(2)+(−3)(−3)= 14
r•F=(1)(1)+(2)(2)+(3)(−3)=− 4|M|=√
[14× 14 −(−4)^2 ]=√
180 Nm=13.42 NmProblem 10. The axis of a circular cylinder
coincides with thez-axis and it rotates with an
angular velocity of (2i− 5 j+ 7 k) rad/s. Deter-
mine the tangential velocity at a pointP on
the cylinder, whose co-ordinates are (j+ 3 k)
metres, and also determine the magnitude of the
tangential velocity.The velocityvof pointPon a body rotating with
angular velocityωabout a fixed axis is given by:v=ω×r,whereris the point on vectorP.Thusv=(2i− 5 j+ 7 k)×(j+ 3 k)=∣ ∣ ∣ ∣ ∣ ∣
ijk
2 − 57
013∣ ∣ ∣ ∣ ∣ ∣=i(− 15 −7)−j(6−0)+k(2−0)=(− 22 i− 6 j+ 2 k)m/sThe magnitude ofv,|v|=√
[(ω•ω)(r•r)−(r•ω)^2 ]
ω•ω=(2)(2)+(−5)(−5)+(7)(7)= 78
r•r=(0)(0)+(1)(1)+(3)(3)= 10
ω•r=(2)(0)+(−5)(1)+(7)(3)= 16Hence,|v|=√
(78× 10 − 162 )=√
524 m/s=22.89 m/sNow try the following exercise.Exercise 98 Further problems on vector
productsIn problems 1 to 4, determine the quantities
stated when
p= 3 i+ 2 k,q=i− 2 j+ 3 kand
r=− 4 i+ 3 j−k- (a)p×q (b)q×p
[(a) 4i− 7 j− 6 k(b)− 4 i+ 7 j+ 6 k] - (a)|p×r| (b)|r×q|
[(a) 11.92 (b) 13.96]