244 VECTOR GEOMETRY
=i(− 12 −84)−j(− 48 −48)
+k(− 168 +24)
=− 96 i+ 96 j− 144 k
or− 48 ( 2 i− 2 j+ 3 k)
Practical applications of vector products
Problem 9. Find the moment and the magni-
tude of the moment of a force of (i+ 2 j− 3 k)
newtons about point B having co-ordinates
(0, 1, 1), when the force acts on a line throughA
whose co-ordinates are (1, 3, 4).
The momentMabout pointBof a force vectorF
which has a position vector ofrfromAis given by:
M=r×F
ris the vector fromBtoA, i.e.r=BA.
ButBA=BO+OA=OA−OB (see Problem 8,
Chapter 21), that is:
r=(i+ 3 j+ 4 k)−(j+k)
=i+ 2 j+ 3 k
Moment,
M=r×F=(i+ 2 j+ 3 k)×(i+ 2 j− 3 k)
=
∣ ∣ ∣ ∣ ∣ ∣
ij k
12 3
12 − 3
∣ ∣ ∣ ∣ ∣ ∣
=i(− 6 −6)−j(− 3 −3)
+k(2−2)
=− 12 i+ 6 jNm
The magnitude ofM,
|M|=|r×F|
=
√
[(r•r)(F•F)−(r•F)^2 ]
r•r=(1)(1)+(2)(2)+(3)(3)= 14
F•F=(1)(1)+(2)(2)+(−3)(−3)= 14
r•F=(1)(1)+(2)(2)+(3)(−3)=− 4
|M|=
√
[14× 14 −(−4)^2 ]
=
√
180 Nm=13.42 Nm
Problem 10. The axis of a circular cylinder
coincides with thez-axis and it rotates with an
angular velocity of (2i− 5 j+ 7 k) rad/s. Deter-
mine the tangential velocity at a pointP on
the cylinder, whose co-ordinates are (j+ 3 k)
metres, and also determine the magnitude of the
tangential velocity.
The velocityvof pointPon a body rotating with
angular velocityωabout a fixed axis is given by:
v=ω×r,
whereris the point on vectorP.
Thusv=(2i− 5 j+ 7 k)×(j+ 3 k)
=
∣ ∣ ∣ ∣ ∣ ∣
ijk
2 − 57
013
∣ ∣ ∣ ∣ ∣ ∣
=i(− 15 −7)−j(6−0)+k(2−0)
=(− 22 i− 6 j+ 2 k)m/s
The magnitude ofv,
|v|=
√
[(ω•ω)(r•r)−(r•ω)^2 ]
ω•ω=(2)(2)+(−5)(−5)+(7)(7)= 78
r•r=(0)(0)+(1)(1)+(3)(3)= 10
ω•r=(2)(0)+(−5)(1)+(7)(3)= 16
Hence,
|v|=
√
(78× 10 − 162 )
=
√
524 m/s=22.89 m/s
Now try the following exercise.
Exercise 98 Further problems on vector
products
In problems 1 to 4, determine the quantities
stated when
p= 3 i+ 2 k,q=i− 2 j+ 3 kand
r=− 4 i+ 3 j−k
- (a)p×q (b)q×p
[(a) 4i− 7 j− 6 k(b)− 4 i+ 7 j+ 6 k] - (a)|p×r| (b)|r×q|
[(a) 11.92 (b) 13.96]