DIFFERENTIATION OF PARAMETRIC EQUATIONS 315G
differentiation (from Chapter 27):
dy
dx=dy
dθ×dθ
dxIt may be shown that this can be written as:
dy
dx=dy
dθ
dx
dθ(1)For the second differential,
d^2 y
dx^2=d
dx(
dy
dx)
=d
dθ(
dy
dx)
·dθ
dxor
d^2 y
dx^2=d
dθ(
dy
dx)dx
dθ(2)Problem 1. Givenx= 5 θ−1 and
y= 2 θ(θ−1), determinedy
dxin terms ofθx= 5 θ−1, hence
dy
dθ= 5y= 2 θ(θ−1)= 2 θ^2 − 2 θ,
hence
dy
dθ= 4 θ− 2 = 2 ( 2 θ− 1 )From equation (1),
dy
dx=dy
dθ
dx
dθ=2 ( 2 θ− 1 )
5or2
5( 2 θ− 1 )Problem 2. The parametric equations of a
function are given byy=3 cos 2t,x=2 sint.Determine expressions for (a)dy
dx(b)d^2 y
dx^2(a)y=3 cos 2t, hencedy
dt=−6 sin 2tx=2 sint, hencedx
dt=2 costFrom equation (1),dy
dx=dy
dt
dx
dt=−6 sin 2t
2 cost=−6(2 sintcost)
2 costfrom double angles, Chapter 18i.e.dy
dx=−6 sint(b) From equation (2),d^2 y
dx^2=d
dt(
dy
dx)dx
dt=d
dt(−6 sint)2 cost=−6 cost
2 costi.e.d^2 y
dx^2=− 3Problem 3. The equation of a tangent drawn to
a curve at point(x 1 ,y 1 )is given by:y−y 1 =dy 1
dx 1(x−x 1 )Determine the equation of the tangent drawn to
the parabolax= 2 t^2 , y= 4 tat the pointt.At pointt,x 1 = 2 t^2 , hencedx 1
dt= 4 tand y 1 = 4 t, hencedy 1
dt= 4From equation (1),dy
dx=dy
dt
dx
dt=4
4 t=1
tHence, the equation of the tangent is:y− 4 t=1
t(
x− 2 t^2)Problem 4. The parametric equations of a
cycloid arex=4(θ−sinθ),y=4(1−cosθ).Determine (a)dy
dx(b)d^2 y
dx^2