DIFFERENTIATION OF PARAMETRIC EQUATIONS 317G
From equation (1),dy
dx=dy
dθ
dx
dθ=6 sin^2 θcosθ
−6 cos^2 θsinθ=−sinθ
cosθ=−tanθWhenθ=π
4,dy
dx=−tanπ
4=− 1x 1 =2 cos^3π
4= 0 .7071 andy 1 =2 sin^3π
4= 0. 7071Hence,the equation of the normal is:y− 0. 7071 =−1
− 1(x− 0 .7071)i.e. y− 0. 7071 =x− 0. 7071
i.e. y=xProblem 6. The parametric equations for a
hyperbola arex=2 secθ,y=4 tanθ. Evaluate(a)dy
dx(b)d^2 y
dx^2, correct to 4 significant figures,
whenθ=1 radian.(a)x=2 secθ, hencedx
dθ=2 secθtanθy=4 tanθ, hencedy
dθ=4 sec^2 θFrom equation (1),dy
dx=dy
dθ
dx
dθ=4 sec^2 θ
2 secθtanθ=2 secθ
tanθ=2(
1
cosθ)(
sinθ
cosθ) =2
sinθor 2 cosecθWhenθ=1 rad,dy
dx=2
sin 1=2.377, correct to
4 significant figures.(b) From equation (2),
d^2 y
dx^2=d
dθ(
dy
dx)dx
dθ=d
dθ(2 cosecθ)2 secθtanθ=−2 cosecθcotθ
2 secθtanθ=−(
1
sinθ)(
cosθ
sinθ)(
1
cosθ)(
sinθ
cosθ)=−(
cosθ
sin^2 θ)(
cos^2 θ
sinθ)=−cos^3 θ
sin^3 θ=−cot^3 θWhen θ=1 rad,d^2 y
dx^2=−cot^31 =−1
(tan 1)^3
=−0.2647, correct to 4 significant figures.Problem 7. When determining the surface ten-
sion of a liquid, the radius of curvature,ρ, of part
of the surface is given by:ρ=√√
√
√[1 +(
dy
dx) 2 ] 3d^2 y
dx^2Find the radius of curvature of the part of the
surface having the parametric equationsx= 3 t^2 ,
y= 6 tat the pointt=2.x= 3 t^2 , hencedx
dt= 6 ty= 6 t, hencedy
dt= 6From equation (1),dy
dx=dy
dt
dx
dt=6
6 t=1
tFrom equation (2),d^2 y
dx^2=d
dt(
dy
dx)dx
dt=d
dt(
1
t)6 t=−1
t^2
6 t=−1
6 t^3