LOGARITHMIC DIFFERENTIATION 325
G
(ii) Apply the laws of logarithms.
Thus lny=ln(1+x)^2 +ln(x−1)
1
2
−lnx−ln(x+2)
1
(^2) ,bylaws(i)
and (ii) of Section 31.2
i.e. lny=2ln(1+x)+^12 ln(x−1)
−lnx−^12 ln(x+2), by law (iii)
of Section 31.2
(iii) Differentiate each term in turn with respect tox
using equations (1) and (2).
Thus
1
y
dy
dx
2
(1+x)
- 1
2
(x−1)
−
1
x
−
1
2
(x+2)
(iv) Rearrange the equation to make
dy
dx
the subject.
Thus
dy
dx
=y
{
2
(1+x)
1
2(x−1)
−
1
x
−
1
2(x+2)
}
(v) Substitute foryin terms ofx.
Thus
dy
dx
( 1 +x)^2
√
(x− 1 )
x
√
(x+ 2 )
{
2
( 1 +x)
1
2 (x− 1 )
−
1
x
−
1
2 (x+ 2 )
}
Problem 1. Use logarithmic differentiation to
differentiatey=
(x+1)(x−2)^3
(x−3)
Following the above procedure:
(i) Since y=
(x+1)(x−2)^3
(x−3)
then lny=ln
{
(x+1)(x−2)^3
(x−3)
}
(ii) lny=ln(x+1)+ln(x−2)^3 −ln(x−3),
by laws (i) and (ii) of Section 31.2,
i.e. lny=ln(x+1)+3ln(x−2)−ln(x−3),
by law (iii) of Section 31.2.
(iii) Differentiating with respect toxgives:
1
y
dy
dx
1
(x+1)
3
(x−2)
−
1
(x−3)
,
by using equations (1) and (2)
(iv) Rearranging gives:
dy
dx
=y
{
1
(x+1)
3
(x−2)
−
1
(x−3)
}
(v) Substituting forygives:
dy
dx
(x+ 1 )(x− 2 )^3
(x− 3 )
{
1
(x+ 1 )
3
(x− 2 )
−
1
(x− 3 )
}
Problem 2. Differentiate
y=
√
(x−2)^3
(x+1)^2 (2x−1)
with respect toxand eval-
uate
dy
dx
whenx=3.
Using logarithmic differentiation and following the
above procedure:
(i) Since y=
√
(x−2)^3
(x+1)^2 (2x−1)
then lny=ln
{ √
(x−2)^3
(x+1)^2 (2x−1)
}
=ln
{
(x−2)
3
2
(x+1)^2 (2x−1)
}
(ii) lny=ln(x−2)
3
(^2) −ln(x+1)^2 −ln(2x−1)
i.e. lny=^32 ln(x−2)−2ln(x+1)
−ln(2x−1)
(iii)
1
y
dy
dx
3
2
(x−2)
−
2
(x+1)
−
2
(2x−1)
(iv)
dy
dx
=y
{
3
2(x−2)
−
2
(x+1)
−
2
(2x−1)
}
(v)
dy
dx
√
(x−2)^3
(x+1)^2 (2x−1)
{
3
2(x−2)
−
2
(x+ 1 )
−
2
( 2 x− 1 )
}