Higher Engineering Mathematics

(Greg DeLong) #1
LOGARITHMIC DIFFERENTIATION 325

G

(ii) Apply the laws of logarithms.

Thus lny=ln(1+x)^2 +ln(x−1)

1
2

−lnx−ln(x+2)

1

(^2) ,bylaws(i)
and (ii) of Section 31.2
i.e. lny=2ln(1+x)+^12 ln(x−1)
−lnx−^12 ln(x+2), by law (iii)
of Section 31.2
(iii) Differentiate each term in turn with respect tox
using equations (1) and (2).
Thus
1
y
dy
dx


2
(1+x)



  • 1
    2
    (x−1)

    1
    x

    1
    2
    (x+2)
    (iv) Rearrange the equation to make
    dy
    dx
    the subject.
    Thus
    dy
    dx
    =y
    {
    2
    (1+x)


  • 1
    2(x−1)

    1
    x

    1
    2(x+2)
    }
    (v) Substitute foryin terms ofx.
    Thus
    dy
    dx


    ( 1 +x)^2

    (x− 1 )
    x

    (x+ 2 )
    {
    2
    ( 1 +x)




  • 1
    2 (x− 1 )

    1
    x

    1
    2 (x+ 2 )
    }
    Problem 1. Use logarithmic differentiation to
    differentiatey=
    (x+1)(x−2)^3
    (x−3)
    Following the above procedure:
    (i) Since y=
    (x+1)(x−2)^3
    (x−3)
    then lny=ln
    {
    (x+1)(x−2)^3
    (x−3)
    }
    (ii) lny=ln(x+1)+ln(x−2)^3 −ln(x−3),
    by laws (i) and (ii) of Section 31.2,
    i.e. lny=ln(x+1)+3ln(x−2)−ln(x−3),
    by law (iii) of Section 31.2.
    (iii) Differentiating with respect toxgives:
    1
    y
    dy
    dx


    1
    (x+1)




  • 3
    (x−2)

    1
    (x−3)
    ,
    by using equations (1) and (2)
    (iv) Rearranging gives:
    dy
    dx
    =y
    {
    1
    (x+1)




  • 3
    (x−2)

    1
    (x−3)
    }
    (v) Substituting forygives:
    dy
    dx


    (x+ 1 )(x− 2 )^3
    (x− 3 )
    {
    1
    (x+ 1 )




  • 3
    (x− 2 )

    1
    (x− 3 )
    }
    Problem 2. Differentiate
    y=

    (x−2)^3
    (x+1)^2 (2x−1)
    with respect toxand eval-
    uate
    dy
    dx
    whenx=3.
    Using logarithmic differentiation and following the
    above procedure:
    (i) Since y=

    (x−2)^3
    (x+1)^2 (2x−1)
    then lny=ln
    { √
    (x−2)^3
    (x+1)^2 (2x−1)
    }
    =ln
    {
    (x−2)
    3
    2
    (x+1)^2 (2x−1)
    }
    (ii) lny=ln(x−2)
    3
    (^2) −ln(x+1)^2 −ln(2x−1)
    i.e. lny=^32 ln(x−2)−2ln(x+1)
    −ln(2x−1)
    (iii)
    1
    y
    dy
    dx


    3
    2
    (x−2)

    2
    (x+1)

    2
    (2x−1)
    (iv)
    dy
    dx
    =y
    {
    3
    2(x−2)

    2
    (x+1)

    2
    (2x−1)
    }
    (v)
    dy
    dx



    (x−2)^3
    (x+1)^2 (2x−1)
    {
    3
    2(x−2)

    2
    (x+ 1 )

    2
    ( 2 x− 1 )
    }



Free download pdf