326 DIFFERENTIAL CALCULUS
Whenx=3,
dy
dx
=
√
(1)^3
(4)^2 (5)
(
3
2
−
2
4
−
2
5
)
=±
1
80
(
3
5
)
=±
3
400
or± 0. 0075
Problem 3. Giveny=
3e^2 θsec 2θ
√
(θ−2)
determine
dy
dθ
Using logarithmic differentiation and following the
procedure gives:
(i) Since y=
3e^2 θsec 2θ
√
(θ−2)
then lny=ln
{
3e^2 θsec 2θ
√
(θ−2)
}
=ln
{
3 e^2 θsec 2θ
(θ−2)
1
2
}
(ii) lny=ln 3e^2 θ+ln sec 2θ−ln(θ−2)
1
2
i.e. lny=ln 3+ln e^2 θ+ln sec 2θ
−^12 ln(θ−2)
i.e. lny=ln 3+ 2 θ+ln sec 2θ−^12 ln(θ−2)
(iii) Differentiating with respect toθgives:
1
y
dy
dθ
= 0 + 2 +
2 sec 2θtan 2θ
sec 2θ
−
1
2
(θ−2)
from equations (1) and (2)
(iv) Rearranging gives:
dy
dθ
=y
{
2 +2 tan 2θ−
1
2(θ−2)
}
(v) Substituting forygives:
dy
dθ
=
3e^2 θsec 2θ
√
(θ− 2 )
{
2 +2 tan 2θ−
1
2 (θ− 2 )
}
Problem 4. Differentiatey =
x^3 ln 2x
exsinx
with
respect tox.
Using logarithmic differentiation and following the
procedure gives:
(i) lny=ln
{
x^3 ln 2x
exsinx
}
(ii) lny=lnx^3 +ln(ln 2x)−ln(ex)−ln(sinx)
i.e. lny=3lnx+ln(ln 2x)−x−ln(sinx)
(iii)
1
y
dy
dx
=
3
x
+
1
x
ln 2x
− 1 −
cosx
sinx
(iv)
dy
dx
=y
{
3
x
+
1
xln 2x
− 1 −cotx
}
(v)
dy
dx
=
x^3 ln 2x
exsinx
{
3
x
+
1
xln 2x
− 1 −cotx
}
Now try the following exercise.
Exercise 133 Further problems on differen-
tiating logarithmic functions
In Problems 1 to 6, use logarithmic differenti-
ation to differentiate the given functions with
respect to the variable.
1.y=
(x−2)(x+1)
(x−1)(x+3)
⎡
⎢
⎢
⎣
(x−2)(x+1)
(x−1)(x+3)
{
1
(x−2)
+
1
(x+1)
−
1
(x−1)
−
1
(x+3)
}
⎤
⎥
⎥
⎦
2.y=
(x+1)(2x+1)^3
(x−3)^2 (x+2)^4
⎡
⎢
⎢
⎣
(x+1)(2x+1)^3
(x−3)^2 (x+2)^4
{
1
(x+1)
+
6
(2x+1)
−
2
(x−3)
−
4
(x+2)
}
⎤
⎥
⎥
⎦
3.y=
(2x−1)
√
(x+2)
(x−3)
√
(x+1)^3
⎡
⎢
⎢
⎢
⎣
(2x−1)
√
(x+2)
(x−3)
√
(x+1)^3
{
2
(2x−1)
+
1
2(x+2)
−
1
(x−3)
−
3
2(x+1)
}
⎤
⎥
⎥
⎥
⎦