Higher Engineering Mathematics

(Greg DeLong) #1
326 DIFFERENTIAL CALCULUS

Whenx=3,

dy
dx

=


(1)^3
(4)^2 (5)

(
3
2


2
4


2
5

)


1
80

(
3
5

)

3
400

or± 0. 0075

Problem 3. Giveny=

3e^2 θsec 2θ

(θ−2)

determine

dy

Using logarithmic differentiation and following the
procedure gives:

(i) Since y=

3e^2 θsec 2θ

(θ−2)

then lny=ln

{
3e^2 θsec 2θ

(θ−2)

}

=ln

{
3 e^2 θsec 2θ

(θ−2)

1
2

}

(ii) lny=ln 3e^2 θ+ln sec 2θ−ln(θ−2)

1
2

i.e. lny=ln 3+ln e^2 θ+ln sec 2θ
−^12 ln(θ−2)

i.e. lny=ln 3+ 2 θ+ln sec 2θ−^12 ln(θ−2)

(iii) Differentiating with respect toθgives:


1
y

dy

= 0 + 2 +

2 sec 2θtan 2θ
sec 2θ


1
2
(θ−2)
from equations (1) and (2)

(iv) Rearranging gives:


dy

=y

{
2 +2 tan 2θ−

1
2(θ−2)

}

(v) Substituting forygives:

dy

=

3e^2 θsec 2θ

(θ− 2 )

{
2 +2 tan 2θ−

1
2 (θ− 2 )

}

Problem 4. Differentiatey =

x^3 ln 2x
exsinx

with
respect tox.

Using logarithmic differentiation and following the
procedure gives:

(i) lny=ln

{
x^3 ln 2x
exsinx

}

(ii) lny=lnx^3 +ln(ln 2x)−ln(ex)−ln(sinx)

i.e. lny=3lnx+ln(ln 2x)−x−ln(sinx)

(iii)

1
y

dy
dx

=

3
x

+

1
x
ln 2x

− 1 −

cosx
sinx

(iv)

dy
dx

=y

{
3
x

+

1
xln 2x

− 1 −cotx

}

(v)

dy
dx

=

x^3 ln 2x
exsinx

{
3
x

+

1
xln 2x

− 1 −cotx

}

Now try the following exercise.

Exercise 133 Further problems on differen-
tiating logarithmic functions

In Problems 1 to 6, use logarithmic differenti-
ation to differentiate the given functions with
respect to the variable.

1.y=

(x−2)(x+1)
(x−1)(x+3)





(x−2)(x+1)
(x−1)(x+3)

{
1
(x−2)

+

1
(x+1)


1
(x−1)


1
(x+3)

}





2.y=

(x+1)(2x+1)^3
(x−3)^2 (x+2)^4




(x+1)(2x+1)^3
(x−3)^2 (x+2)^4

{
1
(x+1)

+

6
(2x+1)


2
(x−3)


4
(x+2)

}





3.y=

(2x−1)


(x+2)
(x−3)


(x+1)^3





(2x−1)


(x+2)

(x−3)


(x+1)^3

{
2
(2x−1)

+

1
2(x+2)


1
(x−3)


3
2(x+1)

}





Free download pdf