326 DIFFERENTIAL CALCULUSWhenx=3,dy
dx=√
(1)^3
(4)^2 (5)(
3
2−2
4−2
5)=±1
80(
3
5)
=±3
400or± 0. 0075Problem 3. Giveny=3e^2 θsec 2θ
√
(θ−2)determinedy
dθUsing logarithmic differentiation and following the
procedure gives:(i) Since y=3e^2 θsec 2θ
√
(θ−2)then lny=ln{
3e^2 θsec 2θ
√
(θ−2)}=ln{
3 e^2 θsec 2θ(θ−2)1
2}(ii) lny=ln 3e^2 θ+ln sec 2θ−ln(θ−2)1
2i.e. lny=ln 3+ln e^2 θ+ln sec 2θ
−^12 ln(θ−2)i.e. lny=ln 3+ 2 θ+ln sec 2θ−^12 ln(θ−2)(iii) Differentiating with respect toθgives:
1
ydy
dθ= 0 + 2 +2 sec 2θtan 2θ
sec 2θ−1
2
(θ−2)
from equations (1) and (2)(iv) Rearranging gives:
dy
dθ=y{
2 +2 tan 2θ−1
2(θ−2)}(v) Substituting forygives:dy
dθ=3e^2 θsec 2θ
√
(θ− 2 ){
2 +2 tan 2θ−1
2 (θ− 2 )}Problem 4. Differentiatey =x^3 ln 2x
exsinxwith
respect tox.Using logarithmic differentiation and following the
procedure gives:(i) lny=ln{
x^3 ln 2x
exsinx}(ii) lny=lnx^3 +ln(ln 2x)−ln(ex)−ln(sinx)i.e. lny=3lnx+ln(ln 2x)−x−ln(sinx)(iii)1
ydy
dx=3
x+1
x
ln 2x− 1 −cosx
sinx(iv)dy
dx=y{
3
x+1
xln 2x− 1 −cotx}(v)dy
dx=x^3 ln 2x
exsinx{
3
x+1
xln 2x− 1 −cotx}Now try the following exercise.Exercise 133 Further problems on differen-
tiating logarithmic functionsIn Problems 1 to 6, use logarithmic differenti-
ation to differentiate the given functions with
respect to the variable.1.y=(x−2)(x+1)
(x−1)(x+3)⎡⎢
⎢
⎣(x−2)(x+1)
(x−1)(x+3){
1
(x−2)+1
(x+1)−1
(x−1)−1
(x+3)}⎤⎥
⎥
⎦2.y=(x+1)(2x+1)^3
(x−3)^2 (x+2)^4
⎡⎢
⎢
⎣(x+1)(2x+1)^3
(x−3)^2 (x+2)^4{
1
(x+1)+6
(2x+1)−2
(x−3)−4
(x+2)}⎤⎥
⎥
⎦3.y=(2x−1)√
(x+2)
(x−3)√
(x+1)^3
⎡⎢
⎢
⎢
⎣(2x−1)√
(x+2)(x−3)√
(x+1)^3{
2
(2x−1)+1
2(x+2)−1
(x−3)−3
2(x+1)}⎤⎥
⎥
⎥
⎦