344 DIFFERENTIAL CALCULUS
Hence
∂z
∂y
= 4 x^3 y− 3.
Problem 2. Giveny=4 sin 3xcos 2t, find
∂y
∂x
and
∂y
∂t
.
To find
∂y
∂x
,tis kept constant
Hence
∂y
∂x
=(4 cos 2t)
d
dx
(sin 3x)
=(4 cos 2t)(3 cos 3x)
i.e.
∂y
∂x
=12 cos 3xcos 2t
To find
∂y
∂t
,xis kept constant.
Hence
∂y
∂t
=(4 sin 3x)
d
dt
(cos 2t)
=(4 sin 3x)(−2 sin 2t)
i.e.
∂y
∂t
=−8 sin 3xsin 2t
Problem 3. Ifz=sinxyshow that
1
y
∂z
∂x
=
1
x
∂z
∂y
∂z
∂x
=ycosxy, sinceyis kept constant.
∂z
∂y
=xcosxy, sincexis kept constant.
1
y
∂z
∂x
=
(
1
y
)
(ycosxy)=cosxy
and
1
x
∂z
∂y
=
(
1
x
)
(xcosxy)=cosxy.
Hence
1
y
∂z
∂x
=
1
x
∂z
∂y
Problem 4. Determine
∂z
∂x
and
∂z
∂y
when
z=
1
√
(x^2 +y^2 )
.
z=
1
√
(x^2 +y^2 )
=(x^2 +y^2 )
− 1
2
∂z
∂x
=−
1
2
(x^2 +y^2 )
− 3
(^2) (2x), by the function of a
function rule (keepingyconstant)
−x
(x^2 +y^2 )
3
2
−x
√
(x^2 +y^2 )^3
∂z
∂y
=−
1
2
(x^2 +y^2 )
− 3
(^2) (2y), (keepingxconstant)
−y
√
(x^2 +y^2 )^3
Problem 5. Pressurepof a mass of gas is given
bypV=mRT, wheremandRare constants,
Vis the volume andTthe temperature. Find
expressions for
∂p
∂T
and
∂p
∂V
SincepV=mRTthenp=
mRT
V
To find
∂p
∂T
,Vis kept constant.
Hence
∂p
∂T
(
mR
V
)
d
dT
(T)=
mR
V
To find
∂p
∂V
,Tis kept constant.
Hence
∂p
∂V
=(mRT)
d
dV
(
1
V
)
=(mRT)(−V−^2 )=
−mRT
V^2
Problem 6. The time of oscillation,t, of a pen-
dulum is given byt= 2 π
√
l
g
wherelis the length
of the pendulum andgthe free fall acceleration
due to gravity. Determine
∂t
∂l
and
∂t
∂g
To find
∂t
∂l
,gis kept constant.