372 INTEGRAL CALCULUS
=⎡⎣θ3
2
3
2+2 θ1
2
1
2⎤⎦41=[
2
3√
θ^3 + 4√
θ] 41={
2
3√
(4)^3 + 4√
4}
−{
2
3√
(1)^3 + 4√
(1)}={
16
3+ 8}
−{
2
3+ 4}= 51
3+ 8 −2
3− 4 = 82
3Problem 14. Evaluate∫π
203 sin 2xdx.∫π
203 sin 2xdx=[
(3)(
−1
2)
cos 2x]π
20=[
−3
2cos 2x]π
20={
−3
2cos 2(π2)}
−{
−3
2cos 2(0)}={
−3
2cosπ}
−{
−3
2cos 0}={
−3
2(−1)}
−{
−3
2(1)}
=3
2+3
2= 3Problem 15. Evaluate∫ 214 cos 3tdt.∫ 2
14 cos 3tdt=[
(4)(
1
3)
sin 3t] 21=[
4
3sin 3t] 21={
4
3sin 6}
−{
4
3sin 3}Note that limits of trigonometric functions are always
expressed in radians—thus, for example, sin 6 means
the sine of 6 radians=− 0. 279415 ...
Hence
∫ 214 cos 3tdt={
4
3(− 0. 279415 ...)}
−{
4
3(0. 141120 ...)}=(− 0 .37255)−(0.18816)=− 0. 5607Problem 16. Evaluate(a)∫ 214e^2 xdx (b)∫ 413
4 udu,each correct to 4 significant figures.(a)∫ 214e^2 xdx=[
4
2e^2 x] 21=2[ e^2 x]^21 =2[ e^4 −e^2 ]=2[54. 5982 − 7 .3891]= 94. 42(b)∫ 413
4 udu=[
3
4lnu] 41=3
4[ln4−ln 1]=3
4[1. 3863 −0]= 1. 040Now try the following exercise.Exercise 147 Further problems on definite
integralsIn problems 1 to 8, evaluate the definite inte-
grals (where necessary, correct to 4 significant
figures).- (a)
∫ 415 x^2 dx (b)∫ 1− 1−3
4t^2 dt
[
(a) 105 (b)−1
2]- (a)
∫ 2− 1(3−x^2 )dx (b)∫ 31(x^2 − 4 x+3) dx[
(a) 6 (b)− 11
3]- (a)
∫π03
2cosθdθ (b)∫ π
204 cosθdθ[(a) 0 (b) 4]- (a)
∫π
3
π
62 sin 2θdθ (b)∫ 203 sintdt[(a) 1 (b) 4.248]- (a)
∫ 105 cos 3xdx (b)∫π
603 sec^22 xdx[(a) 0.2352 (b) 2.598]