Higher Engineering Mathematics

(Greg DeLong) #1
H

Integral calculus


40


Integration using trigonometric and


hyperbolic substitutions


40.1 Introduction


Table 40.1 gives a summary of the integrals that
require the use oftrigonometric and hyperbolic
substitutionsand their application is demonstrated
in Problems 1 to 27.


40.2 Worked problems on integration


of sin^2 x, cos^2 x, tan^2 xand cot^2 x


Problem 1. Evaluate

∫ π
4

0

2 cos^24 tdt.

Since cos 2t=2 cos^2 t−1 (from Chapter 18),

then cos^2 t=

1
2

(1+cos 2t) and

cos^24 t=

1
2

(1+cos 8t)

Hence


∫ π
4

0

2 cos^24 tdt

= 2

∫π
4

0

1
2

(1+cos 8t)dt

=

[
t+

sin 8t
8


4

0

=




π
4

+

sin 8


4

)

8



⎦−

[
0 +

sin 0
8

]

=

π
4

or 0. 7854

Problem 2. Determine


sin^23 xdx.

Since cos 2x= 1 −2 sin^2 x(from Chapter 18),

then sin^2 x=

1
2

(1−cos 2x) and

sin^23 x=

1
2

(1−cos 6x)

Hence


sin^23 xdx=


1
2

(1−cos 6x)dx

=

1
2

(
x−

sin 6x
6

)
+c

Problem 3. Find 3


tan^24 xdx.

Since 1+tan^2 x=sec^2 x, then tan^2 x=sec^2 x− 1
and tan^24 x=sec^24 x−1.

Hence 3


tan^24 xdx= 3


( sec^24 x−1) dx

= 3

(
tan 4x
4

−x

)
+c

Problem 4. Evaluate

∫π
3
π
6

1
2

cot^22 θdθ.

Since cot^2 θ+ 1 =cosec^2 θ, then cot^2 θ=cosec^2 θ− 1
and cot^22 θ=cosec^22 θ−1.

Hence

∫π
3
π
6

1
2

cot^22 θdθ

=

1
2

∫ π
3
π
6

(cosec^22 θ−1) dθ=

1
2

[
−cot 2θ
2

−θ


3
π
6

=

1
2







−cot 2


3

)

2


π
3



⎠−




−cot 2


6

)

2


π
6







=

1
2

[(0. 2887 − 1 .0472)−(− 0. 2887 − 0 .5236)]

= 0. 0269
Free download pdf