Higher Engineering Mathematics

(Greg DeLong) #1

402 INTEGRAL CALCULUS


Sincex=asinθ, then sinθ=


x
a

andθ=sin−^1

x
a

.

Hence



1

(a^2 −x^2 )

dx=sin−^1

x
a

+c

Problem 14. Evaluate

∫ 3

0

1

(9−x^2 )

dx.

From Problem 13,


∫ 3

0

1

(9−x^2 )

dx

=

[
sin−^1

x
3

] 3

0

, sincea= 3

=(sin−^11 −sin−^1 0)=

π
2

or 1. 5708

Problem 15. Find

∫ √
(a^2 −x^2 )dx.

Letx=asinθthen


dx

=acosθand dx=acosθdθ.

Hence


∫ √
(a^2 −x^2 )dx

=

∫ √
(a^2 −a^2 sin^2 θ)(acosθdθ)

=

∫ √
[a^2 (1−sin^2 θ)] (acosθdθ)

=

∫ √
(a^2 cos^2 θ)(acosθdθ)

=


(acosθ)(acosθdθ)

=a^2


cos^2 θdθ=a^2

∫ (
1 +cos 2θ
2

)

(since cos 2θ=2 cos^2 θ−1)

=

a^2
2

(
θ+

sin 2θ
2

)
+c

=

a^2
2

(
θ+

2 sinθcosθ
2

)
+c

since from Chapter 18, sin 2θ=2 sinθcosθ

=

a^2
2

[θ+sinθcosθ]+c

Sincex=asinθ, then sinθ=

x
a

andθ=sin−^1

x
a
Also, cos^2 θ+sin^2 θ=1, from which,

cosθ=


(1−sin^2 θ)=

√[

1 −

(x

a

) 2 ]

=

√(
a^2 −x^2
a^2

)
=


(a^2 −x^2 )
a

Thus

∫ √
(a^2 −x^2 )dx=

a^2
2

[θ+sinθcosθ]

=

a^2
2

[

sin−^1

x
a

+

(x

a

)√(a (^2) −x (^2) )
a
]
+c


a^2
2
sin−^1
x
a




  • x
    2

    (a^2 −x^2 )+c
    Problem 16. Evaluate
    ∫ 4
    0

    (16−x^2 )dx.
    From Problem 15,
    ∫ 4
    0

    (16−x^2 )dx


    [
    16
    2
    sin−^1
    x
    4




  • x
    2

    (16−x^2 )
    ] 4
    0


    [
    8 sin−^11 + 2

    (0)
    ]
    −[8 sin−^10 +0]
    =8 sin−^11 = 8

    2
    )
    = 4 πor 12. 57
    Now try the following exercise.
    Exercise 159 Further problems on integra-
    tion using the sineθsubstitution





  1. Determine



5

(4−t^2 )

dt
[
5 sin−^1

x
2

+c

]


  1. Determine



3

(9−x^2 )

dx
[
3 sin−^1

x
3

+c

]


  1. Determine


∫ √
(4−x^2 )dx
[
2 sin−^1

x
2

+

x
2


(4−x^2 )+c

]
Free download pdf