404 INTEGRAL CALCULUS
Letx=asinhθ, then
dx
dθ=acoshθanddx=acoshθdθ
Hence
∫
1
√
(x^2 +a^2 )dx=∫
1
√
(a^2 sinh^2 θ+a^2 )(acoshθdθ)=∫
acoshθdθ
√
(a^2 cosh^2 θ),since cosh^2 θ−sinh^2 θ= 1=∫
acoshθ
acoshθdθ=∫
dθ=θ+c=sinh−^1x
a+c, sincex=asinhθIt is shown on page 337 that
sinh−^1x
a=ln{
x+√
(x^2 +a^2 )
a},which provides an alternative solution to
∫
1
√
(x^2 +a^2 )
dxProblem 21. Evaluate∫ 201
√
(x^2 +4)dx, cor-rect to 4 decimal places.∫ 201
√
(x^2 +4)dx=[
sinh−^1x
2] 20or[ln{
x+√
(x^2 +4)
2}] 20from Problem 20, wherea= 2
Using the logarithmic form,
∫ 2
01
√
(x^2 +4)dx=[ln(
2 +√
8
2)−ln(
0 +√
4
2)]=ln 2. 4142 −ln 1= 0. 8814 ,
correct to 4 decimal placesProblem 22. Evaluate∫ 212x^2√
(1+x^2 )dx,correct to 3 significant figures.Since the integral contains a term of the form√
(a^2 +x^2 ), then letx=sinhθ, from which
dx
dθ=coshθand dx=coshθdθHence∫
2x^2√
(1+x^2 )dx=∫
2(coshθdθ)sinh^2 θ√
(1+sinh^2 θ)= 2∫
coshθdθ
sinh^2 θcoshθ,since cosh^2 θ−sinh^2 θ= 1= 2∫
dθ
sinh^2 θ= 2∫
cosech^2 θdθ=−2 cothθ+ccothθ=coshθ
sinhθ=√
(1+sinh^2 θ)
sinhθ=√
(1+x^2 )
xHence∫ 212x^2√
1 +x^2 )dx=−[2 cothθ]^21 =− 2[√
(1+x^2 )
x] 21=− 2[√
5
2−√
2
1]= 0. 592 ,correct to 3 significant figuresProblem 23. Find∫ √
(x^2 +a^2 )dx.Letx=asinhθthendx
dθ=acoshθand
dx=acoshθdθHence∫√
(x^2 +a^2 )dx=∫√
(a^2 sinh^2 θ+a^2 )(acoshθdθ)=∫√
[a^2 (sinh^2 θ+1)](acoshθdθ)