Higher Engineering Mathematics

(Greg DeLong) #1
INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 405

H

=

∫ √
(a^2 cosh^2 θ)(acoshθdθ),

since cosh^2 θ−sinh^2 θ= 1

=


(acoshθ)(acoshθ)dθ=a^2


cosh^2 θdθ

=a^2

∫ (
1 +cosh 2θ
2

)

=

a^2
2

(
θ+

sinh 2θ
2

)
+c

=

a^2
2

[θ+sinhθcoshθ]+c,

since sinh 2θ=2 sinhθcoshθ

Sincex=asinhθ, then sinhθ=


x
a

andθ=sinh−^1

x
a

Also since cosh^2 θ−sinh^2 θ= 1


then coshθ=


(1+sinh^2 θ)

=

√[

1 +

(x

a

) 2 ]
=

√(
a^2 +x^2
a^2

)

=


(a^2 +x^2 )
a

Hence

∫ √
(x^2 +a^2 )dx

=

a^2
2

[

sinh−^1

x
a

+

(x

a

)


(x^2 +a^2 )
a

]

+c

=

a^2
2

sinh−^1

x
a

+

x
2


(x^2 +a^2 )+c

Now try the following exercise.


Exercise 161 Further problems on integra-
tion using the sinhθsubstitution


  1. Find



2

(x^2 +16)

dx

[
2 sinh−^1

x
4

+c

]


  1. Find



3

(9+ 5 x^2 )

dx

[
3

5

sinh−^1


5
3

x+c

]


  1. Find


∫ √
(x^2 +9) dx
[
9
2

sinh−^1

x
3

+

x
2


(x^2 +9)+c

]


  1. Find


∫ √
(4t^2 +25) dt
[
25
4

sinh−^1

2 t
5

+

t
2


(4t^2 +25)+c

]


  1. Evaluate


∫ 3

0

4

(t^2 +9)

dt [3.525]


  1. Evaluate


∫ 1

0


(16+ 9 θ^2 )dθ [4.348]

40.8 Worked problems on integration
using the coshθsubstitution

Problem 24. Determine


1

(x^2 −a^2 )

dx.

Letx=acoshθthen

dx

=asinhθand
dx=asinhθdθ

Hence


1

(x^2 −a^2 )

dx

=


1

(a^2 cosh^2 θ−a^2 )

(asinhθdθ)

=


asinhθdθ

[a^2 ( cosh^2 θ−1)]

=


asinhθdθ

(a^2 sinh^2 θ)

,

since cosh^2 θ−sinh^2 θ= 1

=


asinhθdθ
asinhθ

=


dθ=θ+c

=cosh−^1

x
a

+c, sincex=acoshθ

It is shown on page 337 that

cosh−^1

x
a

=ln

{
x+


(x^2 −a^2 )
a

}
Free download pdf