INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 405H
=∫ √
(a^2 cosh^2 θ)(acoshθdθ),since cosh^2 θ−sinh^2 θ= 1=∫
(acoshθ)(acoshθ)dθ=a^2∫
cosh^2 θdθ=a^2∫ (
1 +cosh 2θ
2)
dθ=a^2
2(
θ+sinh 2θ
2)
+c=a^2
2[θ+sinhθcoshθ]+c,since sinh 2θ=2 sinhθcoshθSincex=asinhθ, then sinhθ=
x
aandθ=sinh−^1x
aAlso since cosh^2 θ−sinh^2 θ= 1
then coshθ=√
(1+sinh^2 θ)=√[1 +(xa) 2 ]
=√(
a^2 +x^2
a^2)=√
(a^2 +x^2 )
aHence∫ √
(x^2 +a^2 )dx=a^2
2[sinh−^1x
a+(xa)√
(x^2 +a^2 )
a]+c=a^2
2sinh−^1x
a+x
2√
(x^2 +a^2 )+cNow try the following exercise.
Exercise 161 Further problems on integra-
tion using the sinhθsubstitution- Find
∫
2
√
(x^2 +16)dx[
2 sinh−^1x
4+c]- Find
∫
3
√
(9+ 5 x^2 )dx[
3
√
5sinh−^1√
5
3x+c]- Find
∫ √
(x^2 +9) dx
[
9
2sinh−^1x
3+x
2√
(x^2 +9)+c]- Find
∫ √
(4t^2 +25) dt
[
25
4sinh−^12 t
5+t
2√
(4t^2 +25)+c]- Evaluate
∫ 304
√
(t^2 +9)dt [3.525]- Evaluate
∫ 10√
(16+ 9 θ^2 )dθ [4.348]40.8 Worked problems on integration
using the coshθsubstitutionProblem 24. Determine∫
1
√
(x^2 −a^2 )dx.Letx=acoshθthendx
dθ=asinhθand
dx=asinhθdθHence∫
1
√
(x^2 −a^2 )dx=∫
1
√
(a^2 cosh^2 θ−a^2 )(asinhθdθ)=∫
asinhθdθ
√
[a^2 ( cosh^2 θ−1)]=∫
asinhθdθ
√
(a^2 sinh^2 θ),since cosh^2 θ−sinh^2 θ= 1=∫
asinhθdθ
asinhθ=∫
dθ=θ+c=cosh−^1x
a+c, sincex=acoshθIt is shown on page 337 thatcosh−^1x
a=ln{
x+√
(x^2 −a^2 )
a}