406 INTEGRAL CALCULUS
which provides as alternative solution to
∫
1
√
(x^2 −a^2 )
dx
Problem 25. Determine
∫
2 x− 3
√
(x^2 −9)
dx.
∫
2 x− 3
√
(x^2 −9)
dx=
∫
2 x
√
(x^2 −9)
dx
−
∫
3
√
(x^2 −9)
dx
The first integral is determined using the algebraic
substitutionu=(x^2 −9), and the second integral is
of the form
∫
1
√
(x^2 −a^2 )
dx(see Problem 24)
Hence
∫
2 x
√
(x^2 −9)
dx−
∫
3
√
(x^2 −9)
dx
= 2
√
(x^2 −9)−3 cosh−^1
x
3
+c
Problem 26.
∫ √
(x^2 −a^2 )dx.
Letx=acoshθthen
dx
dθ
=asinhθand
dx=asinhθdθ
Hence
∫ √
(x^2 −a^2 )dx
=
∫ √
(a^2 cosh^2 θ−a^2 )(asinhθdθ)
=
∫ √
[a^2 ( cosh^2 θ−1)] (asinhθdθ)
=
∫ √
(a^2 sinh^2 θ)(asinhθdθ)
=a^2
∫
sinh^2 θdθ=a^2
∫(
cosh 2θ− 1
2
)
dθ
since cosh 2θ= 1 +2 sinh^2 θ
from Table 5.1, page 45,
=
a^2
2
[
sinh 2θ
2
−θ
]
+c
=
a^2
2
[ sinhθcoshθ−θ]+c,
since sinh 2θ=2 sinhθcoshθ
Sincex=acoshθthen coshθ=
x
a
and
θ=cosh−^1
x
a
Also, since cosh^2 θ−sinh^2 θ=1, then
sinhθ=
√
(cosh^2 θ−1)
=
√[
(x
a
) 2
− 1
]
=
√
(x^2 −a^2 )
a
Hence
∫ √
(x^2 −a^2 )dx
=
a^2
2
[√
(x^2 −a^2 )
a
(x
a
)
−cosh−^1
x
a
]
+c
=
x
2
√
(x^2 −a^2 )−
a^2
2
cosh−^1
x
a
+c
Problem 27. Evaluate
∫ 3
2
√
(x^2 −4) dx.
∫ 3
2
√
(x^2 −4) dx=
[
x
2
√
(x^2 −4)−
4
2
cosh−^1
x
2
] 3
2
from Problem 26, whena=2,
=
(
3
5
√
5 −2 cosh−^1
3
2
)
−(0−2 cosh−^1 1)
Since cosh−^1
x
a
=ln
{
x+
√
(x^2 −a^2 )
a
}
then
cosh−^1
3
2
=ln
{
3 +
√
(3^2 − 22 )
2
}
=ln 2. 6180 = 0. 9624
Similarly, cosh−^11 = 0