Higher Engineering Mathematics

(Greg DeLong) #1
406 INTEGRAL CALCULUS

which provides as alternative solution to

1

(x^2 −a^2 )

dx

Problem 25. Determine


2 x− 3

(x^2 −9)

dx.


2 x− 3

(x^2 −9)

dx=


2 x

(x^2 −9)

dx



3

(x^2 −9)

dx

The first integral is determined using the algebraic


substitutionu=(x^2 −9), and the second integral is

of the form


1

(x^2 −a^2 )

dx(see Problem 24)

Hence


2 x

(x^2 −9)

dx−


3

(x^2 −9)

dx

= 2


(x^2 −9)−3 cosh−^1

x
3

+c

Problem 26.

∫ √
(x^2 −a^2 )dx.

Letx=acoshθthen

dx

=asinhθand
dx=asinhθdθ

Hence

∫ √
(x^2 −a^2 )dx

=

∫ √
(a^2 cosh^2 θ−a^2 )(asinhθdθ)

=

∫ √
[a^2 ( cosh^2 θ−1)] (asinhθdθ)

=

∫ √
(a^2 sinh^2 θ)(asinhθdθ)

=a^2


sinh^2 θdθ=a^2

∫(
cosh 2θ− 1
2

)

since cosh 2θ= 1 +2 sinh^2 θ
from Table 5.1, page 45,

=

a^2
2

[
sinh 2θ
2

−θ

]
+c

=

a^2
2

[ sinhθcoshθ−θ]+c,

since sinh 2θ=2 sinhθcoshθ

Sincex=acoshθthen coshθ=

x
a

and

θ=cosh−^1

x
a
Also, since cosh^2 θ−sinh^2 θ=1, then

sinhθ=


(cosh^2 θ−1)

=

√[
(x

a

) 2
− 1

]
=


(x^2 −a^2 )
a

Hence

∫ √
(x^2 −a^2 )dx

=

a^2
2

[√
(x^2 −a^2 )
a

(x

a

)
−cosh−^1

x
a

]

+c

=

x
2


(x^2 −a^2 )−

a^2
2

cosh−^1

x
a

+c

Problem 27. Evaluate

∫ 3

2


(x^2 −4) dx.

∫ 3

2


(x^2 −4) dx=

[
x
2


(x^2 −4)−

4
2

cosh−^1

x
2

] 3

2
from Problem 26, whena=2,

=

(
3
5


5 −2 cosh−^1

3
2

)

−(0−2 cosh−^1 1)

Since cosh−^1

x
a

=ln

{
x+


(x^2 −a^2 )
a

}

then

cosh−^1

3
2

=ln

{
3 +


(3^2 − 22 )
2

}

=ln 2. 6180 = 0. 9624

Similarly, cosh−^11 = 0
Free download pdf