406 INTEGRAL CALCULUSwhich provides as alternative solution to
∫
1
√
(x^2 −a^2 )dxProblem 25. Determine∫
2 x− 3
√
(x^2 −9)dx.∫
2 x− 3
√
(x^2 −9)dx=∫
2 x
√
(x^2 −9)dx−∫
3
√
(x^2 −9)dxThe first integral is determined using the algebraic
substitutionu=(x^2 −9), and the second integral isof the form∫
1
√
(x^2 −a^2 )dx(see Problem 24)Hence∫
2 x
√
(x^2 −9)dx−∫
3
√
(x^2 −9)dx= 2√
(x^2 −9)−3 cosh−^1x
3+cProblem 26.∫ √
(x^2 −a^2 )dx.Letx=acoshθthendx
dθ=asinhθand
dx=asinhθdθHence∫ √
(x^2 −a^2 )dx=∫ √
(a^2 cosh^2 θ−a^2 )(asinhθdθ)=∫ √
[a^2 ( cosh^2 θ−1)] (asinhθdθ)=∫ √
(a^2 sinh^2 θ)(asinhθdθ)=a^2∫
sinh^2 θdθ=a^2∫(
cosh 2θ− 1
2)
dθsince cosh 2θ= 1 +2 sinh^2 θ
from Table 5.1, page 45,=a^2
2[
sinh 2θ
2−θ]
+c=a^2
2[ sinhθcoshθ−θ]+c,since sinh 2θ=2 sinhθcoshθSincex=acoshθthen coshθ=x
aandθ=cosh−^1x
a
Also, since cosh^2 θ−sinh^2 θ=1, thensinhθ=√
(cosh^2 θ−1)=√[
(xa) 2
− 1]
=√
(x^2 −a^2 )
aHence∫ √
(x^2 −a^2 )dx=a^2
2[√
(x^2 −a^2 )
a(xa)
−cosh−^1x
a]+c=x
2√
(x^2 −a^2 )−a^2
2cosh−^1x
a+cProblem 27. Evaluate∫ 32√
(x^2 −4) dx.∫ 32√
(x^2 −4) dx=[
x
2√
(x^2 −4)−4
2cosh−^1x
2] 32
from Problem 26, whena=2,=(
3
5√
5 −2 cosh−^13
2)−(0−2 cosh−^1 1)Since cosh−^1x
a=ln{
x+√
(x^2 −a^2 )
a}thencosh−^13
2=ln{
3 +√
(3^2 − 22 )
2}=ln 2. 6180 = 0. 9624Similarly, cosh−^11 = 0