430 INTEGRAL CALCULUSHence∫
cos^4 xdx=1
4cos^3 xsinx+3
4(
1
2cosxsinx+1
2x)=1
4cos^3 xsinx+3
8cosxsinx+3
8x+cProblem 12. Determine a reduction formulafor∫π
20cosnxdxand hence evaluate
∫ π
20cos^5 xdx.From equation (5),
∫
cosnxdx=1
ncosn−^1 xsinx+n− 1
nIn− 2and hence
∫ π
20cosnxdx=[
1
ncosn−^1 xsinx]π 20+n− 1
nIn− 2=[0−0]+n− 1
nIn− 2i.e.∫ π
20cosnxdx=In=n− 1
nIn− 2 (6)(Note that this is the same reduction formula asfor∫π 20sinnxdx(in Problem 10) and the result isusually known asWallis’s formula).
Thus, from equation (6),
∫π
2
0cos^5 xdx=4
5I 3 , I 3 =2
3I 1and I 1 =∫π
20cos^1 xdx=[sinx]π
2
0 =(1−0)=^1Hence∫π
20cos^5 xdx=4
5I 3 =4
5[
2
3I 1]=4
5[
2
3(1)]
=8
15Now try the following exercise.Exercise 172 Further problems on reduc-
tion formulae for integrals of the form∫
sinnxdxand∫
cosnxdx- Use a reduction formula to determine∫
sin^7 xdx.
⎡
⎢
⎣−1
7sin^6 xcosx−6
35sin^4 xcosx−8
35sin^2 xcosx−16
35cosx+c⎤⎥
⎦- Evaluate
∫π
0 3 sin(^3) xdx using a reduction
formula. [4]
- Evaluate
∫π
20sin^5 xdx using a reductionformula.[
8
15]- Determine, using a reduction formula,∫
cos^6 xdx.
⎡⎢
⎣1
6cos^5 xsinx+5
24cos^3 xsinx+5
16cosxsinx+5
16x+c⎤⎥
⎦- Evaluate
∫ π
20cos^7 xdx.[
16
35]44.5 Further reduction formulae
The following worked problems demonstrate further
examples where integrals can be determined using
reduction formulae.Problem 13. Determine a reduction formula
for∫
tannxdxand hence find∫
tan^7 xdx.LetIn=∫
tannxdx≡∫
tann−^2 xtan^2 xdxby the laws of indices=∫
tann−^2 x(sec^2 x−1) dxsince 1+tan^2 x=sec^2 x=∫
tann−^2 xsec^2 xdx−∫
tann−^2 xdx