448 DIFFERENTIAL EQUATIONS- The rate of cooling of a body is given by
dθ
dt
=kθ, wherekis a constant. Ifθ= 60 ◦C
when t=2 minutes and θ= 50 ◦C when
t=5 minutes, determine the time taken forθ
to fall to 40◦C, correct to the nearest second.
[8 m 40 s]46.5 The solution of equations of the
form
dy
dx
=f(x)·f(y)
A differential equation of the form
dy
dx=f(x)·f(y),
wheref(x) is a function ofxonly andf(y) is a func-tion ofyonly, may be rearranged asdy
f(y)=f(x)dx,and then the solution is obtained by direct integra-
tion, i.e.∫
dy
f(y)=∫
f(x)dxProblem 9. Solve the equation 4xydy
dx=y^2 − 1Separating the variables gives:
(
4 y
y^2 − 1)
dy=1
xdxIntegrating both sides gives:
∫ (
4 y
y^2 − 1)
dy=∫ (
1
x)
dxUsing the substitution u=y^2 −1, the general
solution is:
2ln(y^2 −1)=lnx+c (1)
or ln (y^2 −1)^2 −lnx=cfrom which, ln{
(y^2 −1)^2
x}
=cand(y^2 −1)^2
x=ec (2)If in equation (1),c=lnA, whereAis a different
constant,then ln (y^2 −1)^2 =lnx+lnAi.e. ln (y^2 −1)^2 =lnAx
i.e. (y^2 −1)^2 =Ax (3)Equations (1) to (3) are thus three valid solutions of
the differential equations4 xydy
dx=y^2 − 1Problem 10. Determine the particular solutionofdθ
dt=2e^3 t−^2 θ, given thatt=0 whenθ=0.dθ
dt=2e^3 t−^2 θ=2(e^3 t)(e−^2 θ),by the laws of indices.
Separating the variables gives:dθ
e−^2 θ=2e^3 tdt,i.e. e^2 θdθ=2e^3 tdt
Integrating both sides gives:
∫
e^2 θdθ=∫
2e^3 tdtThus the general solution is:1
2e^2 θ=2
3e^3 t+cWhent=0,θ=0, thus:1
2e^0 =2
3e^0 +cfrom which,c=1
2−2
3=−1
6
Hence the particular solution is:1
2e^2 θ=2
3e^3 t−1
6or 3e^2 θ=4e^3 t− 1Problem 11. Find the curve which satisfies the
equationxy=(1+x^2 )dy
dxand passes through the
point (0, 1).Separating the variables gives:x
(1+x^2 )dx=dy
y