SECOND ORDER DIFFERENTIAL EQUATIONS (NON-HOMOGENEOUS) 485I
the P.I., v=kxe3
2 x (see Table 51.1(c), snag
case (i)).(iv) Substitutingv=kxe3
2 xinto (2D^2 −D−3)v=5e3
2 xgives: (2D^2 −D−3)kxe3
2 x=5e3
2 x.D(
kxe3
2 x)
=(kx)(
3
2 e3
2 x)
+(
e3
2 x)
(k),by the product rule,=ke3
2 x( 3
2 x+^1)D^2(
kxe3
2 x)
=D[
ke3
2 x( 3
2 x+^1)]=(
ke3
2 x)
( 3
2)+( 3
2 x+^1)(
3
2 ke3
2 x)=ke3
2 x( 9
4 x+^3)Hence (2D^2 −D−3)(
kxe3
2 x)= 2[
ke3
2 x( 9
4 x+^3)]
−[
ke3
2 x( 3
2 x+^1)]− 3[
kxe3
2 x]
=5e3
2 xi.e.^92 kxe3
2 x+ 6 ke3
2 x−^32 xke3
2 x−ke3
2 x− 3 kxe3
2 x=5e3
2 xEquating coefficients of e3
2 xgives: 5k=5, from
which,k=1.Hence the P.I.,v=kxe3
2 x=xe3
2 x.
(v) The general solution is y=u+v, i.e.y=Ae3
2 x+Be−x+xe3
2 x.Problem 6. Solved^2 y
dx^2− 4dy
dx+ 4 y=3e^2 x.Using the procedure of Section 51.2:
(i)d^2 y
dx^2− 4dy
dx+ 4 y=3e^2 xin D-operator form is(D^2 −4D+4)y=3e^2 x.(ii) Substituting m for D gives the auxiliary
equationm^2 − 4 m+ 4 =0. Factorising gives:
(m−2)(m−2)=0, from which,m=2 twice.(iii) Since the roots are real and equal, the C.F.,
u=(Ax+B)e^2 x.(iv) Since e^2 xandxe^2 xboth appear in the C.F.
let the P.I.,v=kx^2 e^2 x(see Table 51.1(c), snag
case (ii)).(v) Substitutingv=kx^2 e^2 xinto (D^2 −4D+4)v=
3e^2 xgives: (D^2 −4D+4)(kx^2 e^2 x)=3e^2 xD(kx^2 e^2 x)=(kx^2 )(2e^2 x)+(e^2 x)(2kx)= 2 ke^2 x(x^2 +x)D^2 (kx^2 e^2 x)=D[2ke^2 x(x^2 +x)]=(2ke^2 x)(2x+1)+(x^2 +x)(4ke^2 x)= 2 ke^2 x(4x+ 1 + 2 x^2 )Hence (D^2 −4D+4)(kx^2 e^2 x)=[2ke^2 x(4x+ 1 + 2 x^2 )]−4[2ke^2 x(x^2 +x)]+4[kx^2 e^2 x]=3e^2 x
from which, 2ke^2 x=3e^2 xandk=^32
Hence the P.I.,v=kx^2 e^2 x=^32 x^2 e^2 x.(vi) The general solution,y=u+v, i.e.y=(Ax+B)e^2 x+^32 x^2 e^2 xNow try the following exercise.Exercise 191 Further problems on differen-
tial equations of the formad^2 y
dx^2+bdy
dx+cy=f(x)wheref(x) is an expo-
nential functionIn Problems 1 to 4, find the general solutions of
the given differential equations.1.d^2 y
dx^2−dy
dx− 6 y=2ex[
y=Ae^3 x+Be−^2 x−^13 ex]2.d^2 y
dx^2− 3dy
dx− 4 y=3e−x[
y=Ae^4 x+Be−x−^35 xe−x]