Higher Engineering Mathematics

(Greg DeLong) #1
SECOND ORDER DIFFERENTIAL EQUATIONS (NON-HOMOGENEOUS) 487

I

Using the procedure of Section 51.2:


(i)

d^2 y
dx^2

+ 16 y=10 cos 4xin D-operator form is

(D^2 +16)y=10 cos 4x

(ii) The auxiliary equation ism^2 + 16 =0, from
whichm=


− 16 =±j4.

(iii) Since the roots are complex the C.F.,
u=e^0 (Acos 4x+Bsin 4x)


i.e.u=Acos 4x+Bsin 4x

(iv) Since sin 4xoccurs in the C.F. andin the
right hand side of the given differential equa-
tion, let the P.I.,v=x(Csin 4x+Dcos 4x) (see
Table 51.1(d), snag case—constantsCandD
are used sinceAandBhave already been used
in the C.F.).

(v) Substituting v=x(Csin 4x+Dcos 4x) into
(D^2 +16)v=10 cos 4xgives:

(D^2 +16)[x(Csin 4x+Dcos 4x)]
=10 cos 4x

D[x(Csin 4x+Dcos 4x)]
=x(4Ccos 4x− 4 Dsin 4x)
+(Csin 4x+Dcos 4x)(1),
by the product rule

D^2 [x(Csin 4x+Dcos 4x)]
=x(− 16 Csin 4x− 16 Dcos 4x)
+(4Ccos 4x− 4 Dsin 4x)
+(4Ccos 4x− 4 Dsin 4x)

Hence (D^2 +16)[x(Csin 4x+Dcos 4x)]
=− 16 Cxsin 4x− 16 Dxcos 4x+ 4 Ccos 4x
− 4 Dsin 4x+ 4 Ccos 4x− 4 Dsin 4x
+ 16 Cxsin 4x+ 16 Dxcos 4x
=10 cos 4x,

i.e.− 8 Dsin 4x+ 8 Ccos 4x=10 cos 4x

Equating coefficients of cos 4xgives:

8 C=10, from which,C=

10
8

=

5
4
Equating coefficients of sin 4xgives:
− 8 D=0, from which,D=0.

Hence the P.I.,v=x

(
5
4 sin 4x

)
.

(vi) The general solution,y=u+v, i.e.

y=Acos 4x+Bsin 4x+^54 xsin 4x
(vii) Whenx=0,y=3, thus
3 =Acos 0+Bsin 0+0, i.e.A=3.
dy
dx

=− 4 Asin 4x+ 4 Bcos 4x

+^54 x(4 cos 4x)+^54 sin 4x

Whenx=0,

dy
dx

=4, thus

4 =− 4 Asin 0+ 4 Bcos 0+ 0 +^54 sin 0
i.e. 4= 4 B, from which,B= 1
Hence the particular solution is

y=3 cos 4x+sin 4x+^54 xsin 4x

Now try the following exercise.

Exercise 192 Further problems on differen-
tial equations of the form

a

d^2 y
dx^2

+b

dy
dx

+cy=f(x)wheref(x) is a sine
or cosine function

In Problems 1 to 3, find the general solutions of
the given differential equations.


  1. 2


d^2 y
dx^2


dy
dx

− 3 y=25 sin 2x
[
y=Ae

3
2 x+Be−x
−^15 (11 sin 2x−2 cos 2x)

]

2.

d^2 y
dx^2

− 4

dy
dx

+ 4 y=5 cosx
[
y=(Ax+B)e^2 x−^45 sinx+^35 cosx

]

3.

d^2 y
dx^2

+y=4 cosx

[y=Acosx+Bsinx+ 2 xsinx]


  1. Find the particular solution of the differential


equation

d^2 y
dx^2

− 3

dy
dx

− 4 y=3 sinx; when

x=0,y=0 and

dy
dx

=0.



y=

1
170

(6e^4 x−51e−x)


1
34

(15 sinx−9 cosx)



Free download pdf