SECOND ORDER DIFFERENTIAL EQUATIONS (NON-HOMOGENEOUS) 487
I
Using the procedure of Section 51.2:
(i)
d^2 y
dx^2
+ 16 y=10 cos 4xin D-operator form is
(D^2 +16)y=10 cos 4x
(ii) The auxiliary equation ism^2 + 16 =0, from
whichm=
√
− 16 =±j4.
(iii) Since the roots are complex the C.F.,
u=e^0 (Acos 4x+Bsin 4x)
i.e.u=Acos 4x+Bsin 4x
(iv) Since sin 4xoccurs in the C.F. andin the
right hand side of the given differential equa-
tion, let the P.I.,v=x(Csin 4x+Dcos 4x) (see
Table 51.1(d), snag case—constantsCandD
are used sinceAandBhave already been used
in the C.F.).
(v) Substituting v=x(Csin 4x+Dcos 4x) into
(D^2 +16)v=10 cos 4xgives:
(D^2 +16)[x(Csin 4x+Dcos 4x)]
=10 cos 4x
D[x(Csin 4x+Dcos 4x)]
=x(4Ccos 4x− 4 Dsin 4x)
+(Csin 4x+Dcos 4x)(1),
by the product rule
D^2 [x(Csin 4x+Dcos 4x)]
=x(− 16 Csin 4x− 16 Dcos 4x)
+(4Ccos 4x− 4 Dsin 4x)
+(4Ccos 4x− 4 Dsin 4x)
Hence (D^2 +16)[x(Csin 4x+Dcos 4x)]
=− 16 Cxsin 4x− 16 Dxcos 4x+ 4 Ccos 4x
− 4 Dsin 4x+ 4 Ccos 4x− 4 Dsin 4x
+ 16 Cxsin 4x+ 16 Dxcos 4x
=10 cos 4x,
i.e.− 8 Dsin 4x+ 8 Ccos 4x=10 cos 4x
Equating coefficients of cos 4xgives:
8 C=10, from which,C=
10
8
=
5
4
Equating coefficients of sin 4xgives:
− 8 D=0, from which,D=0.
Hence the P.I.,v=x
(
5
4 sin 4x
)
.
(vi) The general solution,y=u+v, i.e.
y=Acos 4x+Bsin 4x+^54 xsin 4x
(vii) Whenx=0,y=3, thus
3 =Acos 0+Bsin 0+0, i.e.A=3.
dy
dx
=− 4 Asin 4x+ 4 Bcos 4x
+^54 x(4 cos 4x)+^54 sin 4x
Whenx=0,
dy
dx
=4, thus
4 =− 4 Asin 0+ 4 Bcos 0+ 0 +^54 sin 0
i.e. 4= 4 B, from which,B= 1
Hence the particular solution is
y=3 cos 4x+sin 4x+^54 xsin 4x
Now try the following exercise.
Exercise 192 Further problems on differen-
tial equations of the form
a
d^2 y
dx^2
+b
dy
dx
+cy=f(x)wheref(x) is a sine
or cosine function
In Problems 1 to 3, find the general solutions of
the given differential equations.
- 2
d^2 y
dx^2
−
dy
dx
− 3 y=25 sin 2x
[
y=Ae
3
2 x+Be−x
−^15 (11 sin 2x−2 cos 2x)
]
2.
d^2 y
dx^2
− 4
dy
dx
+ 4 y=5 cosx
[
y=(Ax+B)e^2 x−^45 sinx+^35 cosx
]
3.
d^2 y
dx^2
+y=4 cosx
[y=Acosx+Bsinx+ 2 xsinx]
- Find the particular solution of the differential
equation
d^2 y
dx^2
− 3
dy
dx
− 4 y=3 sinx; when
x=0,y=0 and
dy
dx
=0.
⎡
⎢
⎣
y=
1
170
(6e^4 x−51e−x)
−
1
34
(15 sinx−9 cosx)
⎤
⎥
⎦