SECOND ORDER DIFFERENTIAL EQUATIONS (NON-HOMOGENEOUS) 487I
Using the procedure of Section 51.2:
(i)d^2 y
dx^2+ 16 y=10 cos 4xin D-operator form is(D^2 +16)y=10 cos 4x(ii) The auxiliary equation ism^2 + 16 =0, from
whichm=√
− 16 =±j4.(iii) Since the roots are complex the C.F.,
u=e^0 (Acos 4x+Bsin 4x)
i.e.u=Acos 4x+Bsin 4x(iv) Since sin 4xoccurs in the C.F. andin the
right hand side of the given differential equa-
tion, let the P.I.,v=x(Csin 4x+Dcos 4x) (see
Table 51.1(d), snag case—constantsCandD
are used sinceAandBhave already been used
in the C.F.).(v) Substituting v=x(Csin 4x+Dcos 4x) into
(D^2 +16)v=10 cos 4xgives:(D^2 +16)[x(Csin 4x+Dcos 4x)]
=10 cos 4xD[x(Csin 4x+Dcos 4x)]
=x(4Ccos 4x− 4 Dsin 4x)
+(Csin 4x+Dcos 4x)(1),
by the product ruleD^2 [x(Csin 4x+Dcos 4x)]
=x(− 16 Csin 4x− 16 Dcos 4x)
+(4Ccos 4x− 4 Dsin 4x)
+(4Ccos 4x− 4 Dsin 4x)Hence (D^2 +16)[x(Csin 4x+Dcos 4x)]
=− 16 Cxsin 4x− 16 Dxcos 4x+ 4 Ccos 4x
− 4 Dsin 4x+ 4 Ccos 4x− 4 Dsin 4x
+ 16 Cxsin 4x+ 16 Dxcos 4x
=10 cos 4x,i.e.− 8 Dsin 4x+ 8 Ccos 4x=10 cos 4xEquating coefficients of cos 4xgives:8 C=10, from which,C=10
8=5
4
Equating coefficients of sin 4xgives:
− 8 D=0, from which,D=0.Hence the P.I.,v=x(
5
4 sin 4x)
.(vi) The general solution,y=u+v, i.e.y=Acos 4x+Bsin 4x+^54 xsin 4x
(vii) Whenx=0,y=3, thus
3 =Acos 0+Bsin 0+0, i.e.A=3.
dy
dx=− 4 Asin 4x+ 4 Bcos 4x+^54 x(4 cos 4x)+^54 sin 4xWhenx=0,dy
dx=4, thus4 =− 4 Asin 0+ 4 Bcos 0+ 0 +^54 sin 0
i.e. 4= 4 B, from which,B= 1
Hence the particular solution isy=3 cos 4x+sin 4x+^54 xsin 4xNow try the following exercise.Exercise 192 Further problems on differen-
tial equations of the formad^2 y
dx^2+bdy
dx+cy=f(x)wheref(x) is a sine
or cosine functionIn Problems 1 to 3, find the general solutions of
the given differential equations.- 2
d^2 y
dx^2−dy
dx− 3 y=25 sin 2x
[
y=Ae3
2 x+Be−x
−^15 (11 sin 2x−2 cos 2x)]2.d^2 y
dx^2− 4dy
dx+ 4 y=5 cosx
[
y=(Ax+B)e^2 x−^45 sinx+^35 cosx]3.d^2 y
dx^2+y=4 cosx[y=Acosx+Bsinx+ 2 xsinx]- Find the particular solution of the differential
equationd^2 y
dx^2− 3dy
dx− 4 y=3 sinx; whenx=0,y=0 anddy
dx=0.
⎡⎢
⎣y=1
170(6e^4 x−51e−x)−1
34(15 sinx−9 cosx)⎤⎥
⎦