SECOND ORDER DIFFERENTIAL EQUATIONS (NON-HOMOGENEOUS) 489I
(vi) The general solution,y=u+v,
i.e. y=Ae^2 x+Be−^3 x− 2 x
−^13 +7 sinx+cosxProblem 10. Solve the differential equation
d^2 y
dx^2− 2dy
dx+ 2 y=3excos 2x, given that whenx=0,y=2 anddy
dx=3.Using the procedure of Section 51.2:
(i)d^2 y
dx^2− 2dy
dx+ 2 y=3excos 2x in D-operator
form is
(D^2 −2D+2)y=3excos 2x(ii) The auxiliary equation ism^2 − 2 m+ 2 = 0
Using the quadratic formula,m=2 ±√
[4−4(1)(2)]
2=2 ±√
− 4
2=2 ±j 2
2i.e.m= 1 ±j 1.(iii) Since the roots are complex, the C.F.,
u=ex(Acosx+Bsinx).
(iv) Since the right hand side of the given dif-
ferential equation is a product of an expo-
nential and a cosine function, let the P.I.,
v=ex(Csin 2x+Dcos 2x) (see Table 51.1(f)
— again, constantsCandDare used sinceA
andBhave already been used for the C.F.).
(v) Substitutingvinto (D^2 −2D+2)v=3excos 2x
gives:(D^2 −2D+2)[ex(Csin 2x+Dcos 2x)]
=3excos 2xD(v)=ex(2Ccos 2x− 2 Dsin 2x)
+ex(Csin 2x+Dcos 2x)
(≡ex{(2C+D) cos 2x
+(C− 2 D) sin 2x})D^2 (v)=ex(− 4 Csin 2x− 4 Dcos 2x)+ex(2Ccos 2x− 2 Dsin 2x)
+ex(2Ccos 2x− 2 Dsin 2x)
+ex(Csin 2x+Dcos 2x)≡ex{(− 3 C− 4 D) sin 2x
+(4C− 3 D) cos 2x}Hence (D^2 −2D+2)v
=ex{(− 3 C− 4 D) sin 2x+(4C− 3 D) cos 2x}−2ex{(2C+D) cos 2x+(C− 2 D) sin 2x}+2ex(Csin 2x+Dcos 2x)=3excos 2x
Equating coefficients of exsin 2xgives:
− 3 C− 4 D− 2 C+ 4 D+ 2 C= 0
i.e.− 3 C=0, from which,C=0.
Equating coefficients of excos 2xgives:4 C− 3 D− 4 C− 2 D+ 2 D= 3
i.e.− 3 D=3, from which,D=−1.Hence the P.I.,υ=ex(−cos 2x).
(vi) The general solution,y=u+v, i.e.y=ex(Acosx+Bsinx)−excos 2x
(vii) Whenx=0,y=2 thus2 =e^0 (Acos 0+Bsin 0)−e^0 cos 0i.e. 2 =A−1, from which,A= 3dy
dx=ex(−Asinx+Bcosx)+ex(Acosx+Bsinx)−[ex(−2 sin 2x)+excos 2x]When x=0,dy
dx= 3thus 3 =e^0 (−Asin 0+Bcos 0)+e^0 (Acos 0+Bsin 0)−e^0 (−2 sin 0)−e^0 cos 0i.e. 3 =B+A−1, from which,B=1, sinceA= 3Hence the particular solution isy=ex(3 cosx+sinx)−excos 2x