490 DIFFERENTIAL EQUATIONS
Now try the following exercise.
Exercise 193 Further problems on second
order differential equations of the form
a
d^2 y
dx^2
+b
dy
dx
+cy=f(x)wheref(x)is a sum
or product
In Problems 1 to 4, find the general solutions of
the given differential equations.
- 8
d^2 y
dx^2
− 6
dy
dx
+y= 2 x+40 sinx
⎡
⎣
y=Ae
x
(^4) +Be
x
(^2) + 2 x+ 12
- 8
17
(6 cosx−7 sinx)
⎤
⎦
- d^2 y
dθ^2
− 3
dy
dθ
- 2 y=2 sin 2θ−4 cos 2θ
[
y=Ae^2 θ+Beθ+^12 ( sin 2θ+cos 2θ)
]
- d^2 y
dx^2
- dy
dx
− 2 y=x^2 +e^2 x
[
y=Aex+Be−^2 x−^34
−^12 x−^12 x^2 +^14 e^2 x
]
- d^2 y
dt^2
− 2
dy
dt
- 2 y=etsint
[
y=et(Acost+Bsint)− 2 tetcost
]
In Problems 5 to 6 find the particular solutions
of the given differential equations.
- d^2 y
dx^2
− 7
dy
dx
- 10 y=e^2 x+20; whenx=0,
y=0 and
dy
dx
=−
1
3
[
y=
4
3
e^5 x−
10
3
e^2 x−
1
3
xe^2 x+ 2
]
- 2
d^2 y
dx^2
−
dy
dx
− 6 y=6excosx; when x=0,
y=−
21
29
and
dy
dx
=− 6
20
29
⎡
⎣
y=2e−
3
2 x−2e^2 x
+
3ex
29
(3 sinx−7 cosx)
⎤
⎦