Higher Engineering Mathematics

(Greg DeLong) #1

490 DIFFERENTIAL EQUATIONS


Now try the following exercise.


Exercise 193 Further problems on second
order differential equations of the form

a

d^2 y
dx^2

+b

dy
dx

+cy=f(x)wheref(x)is a sum
or product

In Problems 1 to 4, find the general solutions of
the given differential equations.


  1. 8


d^2 y
dx^2

− 6

dy
dx

+y= 2 x+40 sinx


y=Ae

x

(^4) +Be
x
(^2) + 2 x+ 12



  • 8
    17
    (6 cosx−7 sinx)




  1. d^2 y
    dθ^2
    − 3
    dy



  • 2 y=2 sin 2θ−4 cos 2θ
    [
    y=Ae^2 θ+Beθ+^12 ( sin 2θ+cos 2θ)
    ]



  1. d^2 y
    dx^2



  • dy
    dx
    − 2 y=x^2 +e^2 x
    [
    y=Aex+Be−^2 x−^34
    −^12 x−^12 x^2 +^14 e^2 x
    ]



  1. d^2 y
    dt^2
    − 2
    dy
    dt



  • 2 y=etsint
    [
    y=et(Acost+Bsint)− 2 tetcost
    ]
    In Problems 5 to 6 find the particular solutions
    of the given differential equations.



  1. d^2 y
    dx^2
    − 7
    dy
    dx



  • 10 y=e^2 x+20; whenx=0,
    y=0 and
    dy
    dx
    =−
    1
    3
    [
    y=
    4
    3
    e^5 x−
    10
    3
    e^2 x−
    1
    3
    xe^2 x+ 2
    ]



  1. 2


d^2 y
dx^2


dy
dx

− 6 y=6excosx; when x=0,

y=−

21
29

and

dy
dx

=− 6

20
29


y=2e−

3
2 x−2e^2 x

+

3ex
29

(3 sinx−7 cosx)


Free download pdf