504 DIFFERENTIAL EQUATIONS
- Use the Frobenius method to determine the
general power series solution of the differen-
tial equation:
d^2 y
dx^2
+y= 0
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
y=A
(
1 −
x^2
2!
+
x^4
4!
− ···
)
+B
(
x−
x^3
3!
+
x^5
5!
− ···
)
=Pcosx+Qsinx
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
- Determine the power series solution of the
differential equation: 3x
d^2 y
dx^2
+ 4
dy
dx
−y= 0
using the Frobenius method.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
y=A
{
1 +
x
(1×4)
+
x^2
(1×2)(4×7)
+
x^3
(1× 2 ×3)(4× 7 ×10)
+···
}
+Bx−
1
3
{
1 +
x
(1×2)
+
x^2
(1×2)(2×5)
+
x^3
(1× 2 ×3)(2× 5 ×8)
+ ···
}
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
- Show, using the Frobenius method, that
the power series solution of the differential
equation:
d^2 y
dx^2
−y=0 may be expressed as
y=Pcoshx+Qsinhx, wherePandQare
constants. [Hint: check the series expansions
for coshxand sinhxon page 48]
52.6 Bessel’s equation and Bessel’s
functions
One of the most important differential equations in
applied mathematics isBessel’s equationand is of
the form:
x^2
d^2 y
dx^2
+x
dy
dx
+(x^2 −v^2 )y= 0
wherevis a real constant. The equation, which has
applications in electric fields, vibrations and heat
conduction, may be solved using Frobenius’ method
of the previous section.
Problem 10. Determine the general power
series solution of Bessels equation.
Bessel’s equationx^2
d^2 y
dx^2
+x
dy
dx
+(x^2 −v^2 )y= 0
may be rewritten as:x^2 y′′+xy′+(x^2 −v^2 )y= 0
Using the Frobenius method from page 498:
(i) Let a trial solution be of the form
y=xc{a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···
+arxr+···} (34)
wherea 0 =0,
i.e. y=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3
+ ···+arxc+r+··· (35)
(ii) Differentiating equation (35) gives:
y′=a 0 cxc−^1 +a 1 (c+1)xc
+a 2 (c+2)xc+^1 +···
+ar(c+r)xc+r−^1 +···
andy′′=a 0 c(c−1)xc−^2 +a 1 c(c+1)xc−^1
+a 2 (c+1)(c+2)xc+···
+ar(c+r−1)(c+r)xc+r−^2 +···
(iii) Substitutingy,y′andy′′into each term of the
given equation:x^2 y′′+xy′+(x^2 −v^2 )y= 0
gives:
a 0 c(c−1)xc+a 1 c(c+1)xc+^1
+a 2 (c+1)(c+2)xc+^2 +···
+ar(c+r−1)(c+r)xc+r+···+a 0 cxc
+a 1 (c+1)xc+^1 +a 2 (c+2)xc+^2 +···
+ar(c+r)xc+r+···+a 0 xc+^2 +a 1 xc+^3
+a 2 xc+^4 +···+arxc+r+^2 +···−a 0 v^2 xc
−a 1 v^2 xc+^1 −···−arv^2 xc+r+··· = 0
(36)
(iv) Theindicial equationis obtained by equating
the coefficient of the lowest power ofxto zero.
Hence, a 0 c(c−1)+a 0 c−a 0 v^2 = 0
from which, a 0 [c^2 −c+c−v^2 ]= 0
i.e. a 0 [c^2 −v^2 ]= 0
from which, c=+vorc=−vsincea 0 = 0