POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 505
I
For the term inxc+r,
ar(c+r−1)(c+r)+ar(c+r)+ar− 2
−arv^2 = 0
ar[(c+r−1)(c+r)+(c+r)−v^2 ]=−ar− 2
i.e. ar[(c+r)(c+r− 1 +1)−v^2 ]=−ar− 2
i.e. ar[(c+r)^2 −v^2 ]=−ar− 2
i.e. therecurrence relationis:
ar=
ar− 2
v^2 −(c+r)^2
for r≥ 2 (37)
For the term inxc+^1 ,
a 1 [c(c+1)+(c+1)−v^2 ] = 0
i.e. a 1 [(c+1)^2 −v^2 ]= 0
but ifc=v a 1 [(v+1)^2 −v^2 ]= 0
i.e. a 1 [2v+1]= 0
Similarly, ifc=−v a 1 [1− 2 v]= 0
The terms (2v+1)and(1− 2 v) cannot both be
zero sincevis a real constant, hencea 1 =0.
Since a 1 =0, then from equation (37)
a 3 =a 5 =a 7 =...= 0
and
a 2 =
a 0
v^2 −(c+2)^2
a 4 =
a 0
[v^2 −(c+2)^2 ][v^2 −(c+4)^2 ]
a 6 =
a 0
[v^2 −(c+2)^2 ][v^2 −(c+4)^2 ][v^2 −(c+6)^2 ]
and so on.
Whenc=+v,
a 2 =
a 0
v^2 −(v+2)^2
=
a 0
v^2 −v^2 − 4 v− 4
=
−a 0
4 + 4 v
=
−a 0
22 (v+1)
a 4 =
a 0
[
v^2 −(v+2)^2
][
v^2 −(v+4)^2
]
=
a 0
[− 22 (v+1)][− 23 (v+2)]
=
a 0
25 (v+1)(v+2)
=
a 0
24 ×2(v+1)(v+2)
a 6 =
a 0
[v^2 −(v+2)^2 ][v^2 −(v+4)^2 ][v^2 −(v+6)^2 ]
=
a 0
[2^4 ×2(v+1)(v+2)][−12(v+3)]
=
−a 0
24 ×2(v+1)(v+2)× 22 ×3(v+3)
=
−a 0
26 × 3 !(v+1)(v+2)(v+3)
and so on.
The resulting solution forc=+vis given by:
y=u=
Axv
{
1 −
x^2
22 (v+1)
+
x^4
24 × 2 !(v+1)(v+2)
−
x^6
26 × 3 !(v+1)(v+2)(v+3)
+···
}
(38)
which is valid providedvis not a negative
integer and whereAis an arbitrary constant.
Whenc=−v,
a 2 =
a 0
v^2 −(−v+2)^2
=
a 0
v^2 −(v^2 − 4 v+4)
=
−a 0
4 − 4 v
=
−a 0
22 (v− 1 )
a 4 =
a 0
[2^2 (v−1)][v^2 −(−v+4)^2 ]
=
a 0
[2^2 (v−1)][2^3 (v−2)]
=
a 0
24 ×2(v−1)(v−2)
Similarly, a 6 =
a 0
26 × 3 !(v−1)(v−2)(v−3)
Hence,
y=w=
Bx−v
{
1 +
x^2
22 (v−1)
+
x^4
24 × 2 !(v−1)(v−2)
+
x^6
26 × 3 !(v−1)(v−2)(v−3)
+···
}
which is valid providedvis not a positive
integer and whereBis an arbitrary constant.