POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 505I
For the term inxc+r,
ar(c+r−1)(c+r)+ar(c+r)+ar− 2−arv^2 = 0ar[(c+r−1)(c+r)+(c+r)−v^2 ]=−ar− 2i.e. ar[(c+r)(c+r− 1 +1)−v^2 ]=−ar− 2i.e. ar[(c+r)^2 −v^2 ]=−ar− 2i.e. therecurrence relationis:ar=ar− 2
v^2 −(c+r)^2for r≥ 2 (37)For the term inxc+^1 ,
a 1 [c(c+1)+(c+1)−v^2 ] = 0
i.e. a 1 [(c+1)^2 −v^2 ]= 0
but ifc=v a 1 [(v+1)^2 −v^2 ]= 0
i.e. a 1 [2v+1]= 0
Similarly, ifc=−v a 1 [1− 2 v]= 0The terms (2v+1)and(1− 2 v) cannot both be
zero sincevis a real constant, hencea 1 =0.Since a 1 =0, then from equation (37)
a 3 =a 5 =a 7 =...= 0anda 2 =a 0
v^2 −(c+2)^2a 4 =a 0
[v^2 −(c+2)^2 ][v^2 −(c+4)^2 ]a 6 =a 0
[v^2 −(c+2)^2 ][v^2 −(c+4)^2 ][v^2 −(c+6)^2 ]
and so on.Whenc=+v,
a 2 =a 0
v^2 −(v+2)^2=a 0
v^2 −v^2 − 4 v− 4=−a 0
4 + 4 v=−a 0
22 (v+1)a 4 =a 0
[
v^2 −(v+2)^2][
v^2 −(v+4)^2]=a 0
[− 22 (v+1)][− 23 (v+2)]=a 0
25 (v+1)(v+2)=a 0
24 ×2(v+1)(v+2)a 6 =a 0
[v^2 −(v+2)^2 ][v^2 −(v+4)^2 ][v^2 −(v+6)^2 ]=a 0
[2^4 ×2(v+1)(v+2)][−12(v+3)]=−a 0
24 ×2(v+1)(v+2)× 22 ×3(v+3)=−a 0
26 × 3 !(v+1)(v+2)(v+3)and so on.The resulting solution forc=+vis given by:y=u=Axv{
1 −x^2
22 (v+1)+x^4
24 × 2 !(v+1)(v+2)−x^6
26 × 3 !(v+1)(v+2)(v+3)+···}(38)which is valid providedvis not a negative
integer and whereAis an arbitrary constant.Whenc=−v,a 2 =a 0
v^2 −(−v+2)^2=a 0
v^2 −(v^2 − 4 v+4)=−a 0
4 − 4 v=−a 0
22 (v− 1 )a 4 =a 0
[2^2 (v−1)][v^2 −(−v+4)^2 ]=a 0
[2^2 (v−1)][2^3 (v−2)]=a 0
24 ×2(v−1)(v−2)Similarly, a 6 =a 0
26 × 3 !(v−1)(v−2)(v−3)Hence,
y=w=Bx−v{
1 +x^2
22 (v−1)+x^4
24 × 2 !(v−1)(v−2)+x^6
26 × 3 !(v−1)(v−2)(v−3)+···}which is valid providedvis not a positive
integer and whereBis an arbitrary constant.