Higher Engineering Mathematics

(Greg DeLong) #1

628 LAPLACE TRANSFORMS


From equation (1),

L{eat}=

∫∞

0

e−st(eat)dt=

∫∞

0

e−(s−a)tdt,

from the laws of indices,

=

[
e−(s−a)t
−(s−a)

]∞

0

=

1
−(s−a)

(0−1)

=

1
s−a
(provided (s−a)>0, i.e.s>a)
(d)f(t)=cosat(where a is a real constant).
From equation (1),

L{cosat}=

∫∞

0

e−stcosatdt

=

[
e−st
s^2 +a^2

(asinat−scosat)

]∞

0
by integration by parts twice (see page 421),

=

[
e−s(∞)
s^2 +a^2

(asina(∞)−scosa(∞))


e^0
s^2 +a^2

(asin 0−scos 0)

]

=

s
s^2 +a^2

( provideds>0)

(e)f(t)=t. From equation (1),

L{t}=

∫∞

0

e−sttdt=

[
te−st
−s



e−st
−s

dt

]∞

0

=

[
te−st
−s


e−st
s^2

]∞

0
by integration by parts,

=

[
∞e−s(∞)
−s


e−s(∞)
s^2

]

[
0 −

e^0
s^2

]

=(0−0)−

(
0 −

1
s^2

)

since (∞×0)=0,

=

1
s^2

(provideds>0)

(f) f(t)=tn(wheren=0, 1, 2, 3, ...).
By a similar method to (e) it may be shown

thatL{t^2 }=

2
s^3

andL{t^3 }=

(3)(2)
s^4

=

3!
s^4

. These


results can be extended tonbeing any positive
integer.

ThusL{tn}=

n!
sn+^1

provideds>0)

(g) f(t)=sinhat. From Chapter 5,

sinhat=

1
2

(eat−e−at). Hence,

L{sinhat}=L

{
1
2

eat−

1
2

e−at

}

=

1
2

L{eat}−

1
2

L{e−at}

from equations (2) and (3),

=

1
2

[
1
s−a

]

1
2

[
1
s+a

]

from (c) above,

=

1
2

[
1
s−a


1
s+a

]

=

a
s^2 −a^2

(provideds>a)

A list of elementary standard Laplace transforms are
summarized in Table 64.1.

Table 64.1 Elementary standard Laplace transforms

Function Laplace transforms
f(t) L{f(t)}=

∫∞
0 e

−stf(t)dt

(i) 1

1
s

(ii) k

k
s

(iii) eat

1
s−a
(iv) sinat

a
s^2 +a^2
(v) cosat

s
s^2 +a^2

(vi) t

1
s^2

(vii) t^2

2!
s^3

(viii) tn(n=1, 2, 3,...)

n!
sn+^1
(ix) coshat

s
s^2 −a^2
(x) sinhat

a
s^2 −a^2
Free download pdf