628 LAPLACE TRANSFORMS
From equation (1),
L{eat}=
∫∞
0
e−st(eat)dt=
∫∞
0
e−(s−a)tdt,
from the laws of indices,
=
[
e−(s−a)t
−(s−a)
]∞
0
=
1
−(s−a)
(0−1)
=
1
s−a
(provided (s−a)>0, i.e.s>a)
(d)f(t)=cosat(where a is a real constant).
From equation (1),
L{cosat}=
∫∞
0
e−stcosatdt
=
[
e−st
s^2 +a^2
(asinat−scosat)
]∞
0
by integration by parts twice (see page 421),
=
[
e−s(∞)
s^2 +a^2
(asina(∞)−scosa(∞))
−
e^0
s^2 +a^2
(asin 0−scos 0)
]
=
s
s^2 +a^2
( provideds>0)
(e)f(t)=t. From equation (1),
L{t}=
∫∞
0
e−sttdt=
[
te−st
−s
−
∫
e−st
−s
dt
]∞
0
=
[
te−st
−s
−
e−st
s^2
]∞
0
by integration by parts,
=
[
∞e−s(∞)
−s
−
e−s(∞)
s^2
]
−
[
0 −
e^0
s^2
]
=(0−0)−
(
0 −
1
s^2
)
since (∞×0)=0,
=
1
s^2
(provideds>0)
(f) f(t)=tn(wheren=0, 1, 2, 3, ...).
By a similar method to (e) it may be shown
thatL{t^2 }=
2
s^3
andL{t^3 }=
(3)(2)
s^4
=
3!
s^4
. These
results can be extended tonbeing any positive
integer.
ThusL{tn}=
n!
sn+^1
provideds>0)
(g) f(t)=sinhat. From Chapter 5,
sinhat=
1
2
(eat−e−at). Hence,
L{sinhat}=L
{
1
2
eat−
1
2
e−at
}
=
1
2
L{eat}−
1
2
L{e−at}
from equations (2) and (3),
=
1
2
[
1
s−a
]
−
1
2
[
1
s+a
]
from (c) above,
=
1
2
[
1
s−a
−
1
s+a
]
=
a
s^2 −a^2
(provideds>a)
A list of elementary standard Laplace transforms are
summarized in Table 64.1.
Table 64.1 Elementary standard Laplace transforms
Function Laplace transforms
f(t) L{f(t)}=
∫∞
0 e
−stf(t)dt
(i) 1
1
s
(ii) k
k
s
(iii) eat
1
s−a
(iv) sinat
a
s^2 +a^2
(v) cosat
s
s^2 +a^2
(vi) t
1
s^2
(vii) t^2
2!
s^3
(viii) tn(n=1, 2, 3,...)
n!
sn+^1
(ix) coshat
s
s^2 −a^2
(x) sinhat
a
s^2 −a^2