634 LAPLACE TRANSFORMS
Now try the following exercise.
Exercise 232 Further problems on Laplace
transforms of the form eatf(t)
Determine the Laplace transforms of the follow-
ing functions:
- (a) 2te^2 t(b)t^2 et
[
(a)
2
(s−2)^2
(b)
2
(s−1)^3
]
- (a) 4t^3 e−^2 t(b)
1
2
t^4 e−^3 t
[
(a)
24
(s+2)^4
(b)
12
(s+3)^5
]
- (a) etcost(b) 3e^2 tsin 2t
[
(a)
s− 1
s^2 − 2 s+ 2
(b)
6
s^2 − 4 s+ 8
]
- (a) 5e−^2 tcos 3t(b) 4e−^5 tsint
[
(a)
5(s+2)
s^2 + 4 s+ 13
(b)
4
s^2 + 10 s+ 26
]
- (a) 2etsin^2 t(b)
1
2
e^3 tcos^2 t
⎡
⎢
⎢
⎣
(a)
1
s− 1
−
s− 1
s^2 − 2 s+ 5
(b)
1
4
(
1
s− 3
+
s− 3
s^2 − 6 s+ 13
)
⎤
⎥
⎥
⎦
- (a) etsinht(b) 3e^2 tcosh 4t
[
(a)
1
s(s−2)
(b)
3(s−2)
s^2 − 4 s− 12
]
- (a) 2e−tsinh 3t(b)
1
4
e−^3 tcosh 2t
[
(a)
6
s^2 + 2 s− 8
(b)
s+ 3
4(s^2 + 6 s+5)
]
- (a) 2et( cos 3t−3 sin 3t)
(b) 3e−^2 t( sinh 2t−2 cosh 2t)
[
(a)
2(s−10)
s^2 − 2 s+ 10
(b)
−6(s+1)
s(s+4)
]
65.3 The Laplace transforms of
derivatives
(a) First derivative
Let the first derivative off(t)bef′(t) then, from
equation (1),
L{f′(t)}=
∫∞
0
e−stf′(t)dt
From Chapter 43, when integrating by parts
∫
u
dv
dt
dt=uv−
∫
v
du
dt
dt
When evaluating
∫∞
0 e
−stf′(t)dt,
letu=e−stand
dv
dt
=f′(t)
from which,
du
dt
=−se−standv=
∫
f′(t)dt=f(t)
Hence
∫∞
0
e−stf′(t)dt
=
[
e−stf(t)
]∞
0 −
∫∞
0
f(t)(−se−st)dt
=[0−f(0)]+s
∫∞
0
e−stf(t)dt
=−f(0)+sL{f(t)}
assuming e−stf(t)→0ast→∞, andf(0) is the
value off(t)att=0. Hence,
L{f′(t)}=sL{f(t)}−f(0)
or L
{
dy
dx
}
=sL{y}−y(0)
⎫
⎬
⎭
(3)
wherey(0) is the value ofyatx=0.
(b) Second derivative
Let the second derivative off(t)bef′′(t), then from
equation (1),
L{f′′(t)}=
∫∞
0
e−stf′′(t)dt
Integrating by parts gives:
∫∞
0
e−stf′′(t)dt=
[
e−stf′(t)
]∞
0 +s
∫∞
0
e−stf′(t)dt
=[0−f′(0)]+sL{f′(t)}