Higher Engineering Mathematics

(Greg DeLong) #1

634 LAPLACE TRANSFORMS


Now try the following exercise.


Exercise 232 Further problems on Laplace
transforms of the form eatf(t)

Determine the Laplace transforms of the follow-
ing functions:


  1. (a) 2te^2 t(b)t^2 et
    [
    (a)


2
(s−2)^2

(b)

2
(s−1)^3

]


  1. (a) 4t^3 e−^2 t(b)


1
2

t^4 e−^3 t

[
(a)

24
(s+2)^4

(b)

12
(s+3)^5

]


  1. (a) etcost(b) 3e^2 tsin 2t
    [
    (a)


s− 1
s^2 − 2 s+ 2

(b)

6
s^2 − 4 s+ 8

]


  1. (a) 5e−^2 tcos 3t(b) 4e−^5 tsint
    [
    (a)


5(s+2)
s^2 + 4 s+ 13

(b)

4
s^2 + 10 s+ 26

]


  1. (a) 2etsin^2 t(b)


1
2

e^3 tcos^2 t





(a)

1
s− 1


s− 1
s^2 − 2 s+ 5

(b)

1
4

(
1
s− 3

+

s− 3
s^2 − 6 s+ 13

)






  1. (a) etsinht(b) 3e^2 tcosh 4t
    [
    (a)


1
s(s−2)

(b)

3(s−2)
s^2 − 4 s− 12

]


  1. (a) 2e−tsinh 3t(b)


1
4

e−^3 tcosh 2t

[
(a)

6
s^2 + 2 s− 8

(b)

s+ 3
4(s^2 + 6 s+5)

]


  1. (a) 2et( cos 3t−3 sin 3t)


(b) 3e−^2 t( sinh 2t−2 cosh 2t)
[
(a)

2(s−10)
s^2 − 2 s+ 10

(b)

−6(s+1)
s(s+4)

]

65.3 The Laplace transforms of
derivatives

(a) First derivative

Let the first derivative off(t)bef′(t) then, from
equation (1),

L{f′(t)}=

∫∞

0

e−stf′(t)dt

From Chapter 43, when integrating by parts

u

dv
dt

dt=uv−


v

du
dt

dt

When evaluating

∫∞
0 e

−stf′(t)dt,

letu=e−stand

dv
dt

=f′(t)

from which,
du
dt

=−se−standv=


f′(t)dt=f(t)

Hence

∫∞

0

e−stf′(t)dt

=

[
e−stf(t)

]∞
0 −

∫∞

0

f(t)(−se−st)dt

=[0−f(0)]+s

∫∞

0

e−stf(t)dt

=−f(0)+sL{f(t)}

assuming e−stf(t)→0ast→∞, andf(0) is the
value off(t)att=0. Hence,

L{f′(t)}=sL{f(t)}−f(0)

or L

{
dy
dx

}
=sL{y}−y(0)




(3)

wherey(0) is the value ofyatx=0.

(b) Second derivative

Let the second derivative off(t)bef′′(t), then from
equation (1),

L{f′′(t)}=

∫∞

0

e−stf′′(t)dt

Integrating by parts gives:
∫∞

0

e−stf′′(t)dt=

[
e−stf′(t)

]∞
0 +s

∫∞

0

e−stf′(t)dt

=[0−f′(0)]+sL{f′(t)}
Free download pdf