646 LAPLACE TRANSFORMS
Hencey=L−^1
{
8 s+ 38
2 s^2 + 5 s− 3
}
=L−^1
{
12
2 s− 1
−
2
s+ 3
}
=L−^1
{
12
2
(
s−^12
)
}
−L−^1
{
2
s+ 3
}
Hencey=6e
1
2 x−2e−^3 x, from (iii) of
Table 66.1.
Problem 2. Use Laplace transforms to solve
the differential equation:
d^2 y
dx^2
+ 6
dy
dx
+ 13 y=0, given that when
x=0,y=3 and
dy
dx
=7.
This is the same as Problem 3 of Chapter 50,
page 477. Using the above procedure:
(i)L
{
d^2 x
dy^2
}
+ 6 L
{
dy
dx
}
+ 13 L{y}=L{ 0 }
Hence [s^2 L{y}−sy(0)−y′(0)]
+6[sL{y}−y(0)]+ 13 L{y}=0,
from equations (3) and (4) of Chapter 65.
(ii)y(0)=3 andy′(0)= 7
Thus s^2 L{y}− 3 s− 7 + 6 sL{y}
− 18 + 13 L{y}= 0
(iii) Rearranging gives:
(s^2 + 6 s+13)L{y}= 3 s+ 25
i.e. L{y}=
3 s+ 25
s^2 + 6 s+ 13
(iv)y=L−^1
{
3 s+ 25
s^2 + 6 s+ 13
}
=L−^1
{
3 s+ 25
(s+3)^2 + 22
}
=L−^1
{
3(s+3)+ 16
(s+3)^2 + 22
}
=L−^1
{
3(s+3)
(s+3)^2 + 22
}
+L−^1
{
8(2)
(s+3)^2 + 22
}
=3e−^3 tcos 2t+8e−^3 tsin 2t, from (xiii)
and (xii) of Table 66.1
Hencey=e−^3 t(3 cos 2t+8 sin 2t)
Problem 3. Use Laplace transforms to solve
the differential equation:
d^2 y
dx^2
− 3
dy
dx
=9, given that whenx=0,y= 0
and
dy
dx
=0.
This is the same problem as Problem 2 of Chapter 51,
page 482. Using the procedure:
(i)L
{
d^2 y
dx^2
}
− 3 L
{
dy
dx
}
=L{ 9 }
Hence [s^2 L{y}−sy(0)−y′(0)]
−3[sL{y}−y(0)]=
9
s
(ii)y(0)=0 andy′(0)= 0
Hences^2 L{y}− 3 sL{y}=
9
s
(iii) Rearranging gives:
(s^2 − 3 s)L{y}=
9
s
i.e. L{y}=
9
s(s^2 − 3 s)
=
9
s^2 (s−3)
(iv)y=L−^1
{
9
s^2 (s−3)
}
9
s^2 (s−3)
≡
A
s
+
B
s^2
+
C
s− 3
≡
A(s)(s−3)+B(s−3)+Cs^2
s^2 (s−3)
Hence 9≡A(s)(s−3)+B(s−3)+Cs^2.
Whens=0, 9=− 3 B, from which,B=−3.
Whens=3, 9= 9 C, from which,C=1.