646 LAPLACE TRANSFORMSHencey=L−^1{
8 s+ 38
2 s^2 + 5 s− 3}=L−^1{
12
2 s− 1−2
s+ 3}=L−^1{
12
2(
s−^12)}−L−^1{
2
s+ 3}Hencey=6e1
2 x−2e−^3 x, from (iii) ofTable 66.1.Problem 2. Use Laplace transforms to solve
the differential equation:d^2 y
dx^2+ 6dy
dx+ 13 y=0, given that whenx=0,y=3 anddy
dx=7.This is the same as Problem 3 of Chapter 50,
page 477. Using the above procedure:
(i)L{
d^2 x
dy^2}
+ 6 L{
dy
dx}
+ 13 L{y}=L{ 0 }Hence [s^2 L{y}−sy(0)−y′(0)]+6[sL{y}−y(0)]+ 13 L{y}=0,from equations (3) and (4) of Chapter 65.
(ii)y(0)=3 andy′(0)= 7Thus s^2 L{y}− 3 s− 7 + 6 sL{y}− 18 + 13 L{y}= 0(iii) Rearranging gives:
(s^2 + 6 s+13)L{y}= 3 s+ 25i.e. L{y}=3 s+ 25
s^2 + 6 s+ 13(iv)y=L−^1{
3 s+ 25
s^2 + 6 s+ 13}=L−^1{
3 s+ 25
(s+3)^2 + 22}=L−^1{
3(s+3)+ 16
(s+3)^2 + 22}=L−^1{
3(s+3)
(s+3)^2 + 22}+L−^1{
8(2)
(s+3)^2 + 22}=3e−^3 tcos 2t+8e−^3 tsin 2t, from (xiii)and (xii) of Table 66.1Hencey=e−^3 t(3 cos 2t+8 sin 2t)Problem 3. Use Laplace transforms to solve
the differential equation:
d^2 y
dx^2− 3dy
dx=9, given that whenx=0,y= 0anddy
dx=0.This is the same problem as Problem 2 of Chapter 51,
page 482. Using the procedure:(i)L{
d^2 y
dx^2}
− 3 L{
dy
dx}
=L{ 9 }Hence [s^2 L{y}−sy(0)−y′(0)]−3[sL{y}−y(0)]=9
s
(ii)y(0)=0 andy′(0)= 0Hences^2 L{y}− 3 sL{y}=9
s
(iii) Rearranging gives:(s^2 − 3 s)L{y}=9
si.e. L{y}=9
s(s^2 − 3 s)=9
s^2 (s−3)(iv)y=L−^1{
9
s^2 (s−3)}9
s^2 (s−3)≡A
s+B
s^2+C
s− 3≡A(s)(s−3)+B(s−3)+Cs^2
s^2 (s−3)Hence 9≡A(s)(s−3)+B(s−3)+Cs^2.Whens=0, 9=− 3 B, from which,B=−3.Whens=3, 9= 9 C, from which,C=1.